

Exploring Polar Equations Two of the basic forms of a polar curve are given by $r(\theta) = a + b \cos(n\theta)$ and $r(\theta) = a + b \sin(n\theta)$. By changing the values of *a*, *b*, and *n* different polar curves can be generated.

Circle Exploration

- 1. Open a new TI InterActive! document. Title this document **Exploring Polar Equations**. Add your name and the date to this document.
- 2. Select Mode settings and change the Graph Type to Polar and the Angle Format to Radian. Click on OK.
- 3. Select Graph P to open a Graph window and define $r1(\theta) := 2 \cos(\theta)$. Click in the box to the left of $r1(\theta)$ to select the equation. Sketch the graph of $r1(\theta) := 2 \cos(\theta)$ on the provided grid.

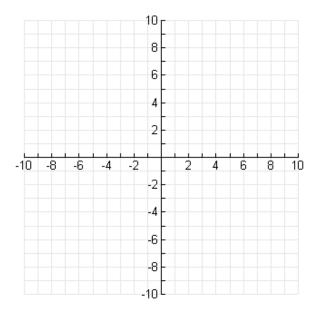
6 4 2 -10 -8 10 -6 -4 -2 4 6 8 -2 -4 -6 -8 -10

10

8

Note: Use the Symbol Palette to access the θ .

- 4. Define and select $r2(\theta)$: = $3\cos(\theta)$. Sketch the graph of $r2(\theta)$: = $3\cos(\theta)$ on the same grid.
- 5. Define and select $r_3(\theta)$: = -4 cos(θ). Sketch the graph of $r_3(\theta)$: = -4 cos(θ) on the same grid.


- 6. Define and select $r4(\theta)$: = $-5 \cos(\theta)$. Sketch the graph of $r4(\theta)$: = $-5 \cos(\theta)$ on the same grid.
- Ŧ 7. Click on Save to Document to paste the graphs into your TI InterActive! document.

Circle Analysis

- 1. In the equation $y = a + b \cos(n\theta)$, what is the value of *a* for each of the equations in *Circle Exploration* questions 3 through 6? What is the value of *n*?
 - *n* = _____ a =
- 2. What effect does the absolute value of b have on the graph of the circle?
- 3. What effect does the positive or negative value of *b* have on the graph?

Rose Polar Curve Exploration

- 1. Select Graph 😢 to open a new graphing window and define $r1(\theta)$: = 4 cos(θ). Click in the box to the left of $r1(\theta)$ to select the equation. Sketch the graph of $r1(\theta)$: = 4 cos(θ) on the provided grid.
- 2. Define and select $r2(\theta)$: = 4 cos(2 θ). Sketch the graph of $r2(\theta)$: = 4 cos(2 θ) on the same grid.
- 3. Define and select $r_3(\theta)$: = 4 cos(3 θ). Sketch the graph of $r3(\theta)$: = 4 cos(3 θ) on the same grid.

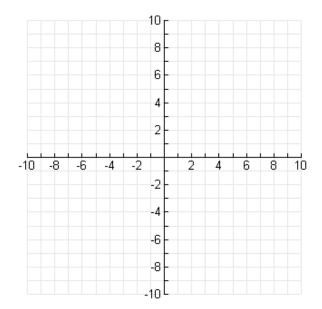
- 4. Define and select $r4(\theta)$: = 4 cos(4 θ). Sketch the graph of $r4(\theta)$: = 4 cos(4 θ) on the same grid.
- 5. Click on Save to Document to paste the graphs into your TI InterActive! document.

Rose Polar Curve Analysis

1. In the equation $y = a + b \cos(n\theta)$, what is the value of *a* for each of the equations in *Rose Polar Curves Exploration* questions 1 through 4? What is the value of *b*?

a = _____ *b* = _____

2. How many rose leaves does each equation produce?

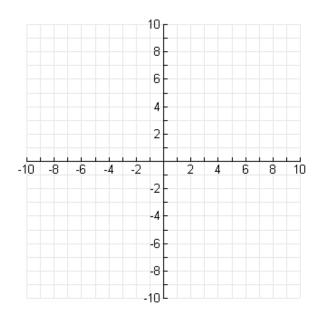

A. $r1(\theta) := 4 \cos(\theta)$ leaves = _____

- B. $r_{2}(\theta) := 4 \cos(2\theta)$ leaves = _____
- C. $r3(\theta) := 4 \cos(3\theta)$ leaves = _____
- D. $r4(\theta) := 4 \cos(4\theta)$ leaves = _____
- 3. How does the value of *n* determine the number of leaves?
- 4. Select Graph P to open a new graph window. Define $r1(\theta): = 4 \cos(3\theta), r2(\theta): = 5 \cos(3\theta)$ and $r3(\theta): = 6 \cos(3\theta)$. Click on Save to Document P to paste the graphs into your TI InterActive! document. What effect does the value of *b* have on the leaves of the rose?
- 5. Select Graph 🔄 to open a new graph window. Define

 $r1(\theta)$: = 5 cos(3 θ) and $r2(\theta)$: = -5 cos(3 θ). Click on Save to Document to paste the graphs into your TI InterActive! document What effect does the positive or negative value of *b* have on the graph?

Limaçon Curve Exploration

- 1. Select Graph P to open a new graphing window and define $r1(\theta)$: = 1 + 2 cos(θ). Click in the box to the left of $r1(\theta)$ to select the equation. Sketch the graph of $r1(\theta)$: = 1 + 2 cos(θ) on the provided grid.
- 2. Define and select $r2(\theta)$: = 2 + 4 cos(θ). Sketch the graph of $r2(\theta)$: = 2 + 4 cos(θ) on the same grid.
- 3. Define and select $r_3(\theta)$: = 1 - 3 cos(θ). Sketch the graph of $r_3(\theta)$: = 1 - 3 cos(θ) on the same grid.


- 4. Define and select $r4(\theta)$: = 2 5 cos(θ). Sketch the graph of $r4(\theta)$: = 2 5 cos(θ) on the same grid.
- 5. Click on Save to Document to paste the graphs into your TI InterActive! document.

Limaçon Curve Analysis

- 1. In the equation $y = a + b \cos(n\theta)$, what is the value of *n* for each of the equations in *Limaçon Curve Exploration* questions 1 through 4?
 - *n* = _____
- 2. How does the absolute value of *a* compare to the absolute value of *b*?
- 3. How do the absolute values of *a* and *b* effect the graph?
- 4. What effect does the positive or negative value of *b* have on the graph?

Cardiod Curve Exploration

- 1. Select Graph to open a new graphing window and define $r1(\theta)$: = 2 + 2 cos(θ). Click in the box to the left of $r1(\theta)$ to select the equation. Sketch the graph of $r1(\theta)$: = 2 + 2 cos(θ) on the provided grid.
- 2. Define and select $r2(\theta)$: = 3 + 3 cos(θ). Sketch the graph of $r2(\theta)$: = 3 + 3 cos(θ) on the same grid.
- 3. Define and select $r3(\theta)$: = 4 + 4 cos(θ). Sketch the graph of $r3(\theta)$: = 4 + 4 cos(θ) on the same grid.

- 4. Define and select $r4(\theta)$: = 5 + 5 cos(θ). Sketch the graph of $r4(\theta)$: = 5 + 5 cos(θ) on the same grid.
- 5. Click on Save to Document to paste the graphs into your TI InterActive! document.

Cardiod Curve Analysis

1. In the equation $y = a + b \cos(n\theta)$, what is the value of *n* for each of the equations in *Cardiod Curve Exploration* questions 1 through 4?

n = _____

- 2. How does the absolute value of *a* compare to the absolute value of *b*?
- 3. How do the absolute values of *a* and *b* affect the graph?
- 4. Select Graph 1 to open a new graph window. Define $r1(\theta) := 3 + 3 \cos(\theta)$ and $r2(\theta) := 3 - 3 \cos(\theta)$. Click on Save to Document 1 to paste the graphs into your TI InterActive! document. What effect does the positive or negative value of *b* have on the graph?
- 5. Save this document as **cardiod.tii**. Print a copy of this document.

Additional Exercises

In a math box, define a: = 0, b = 2, n: = 1. Select Polar Graph and define $r1(\theta)$: = a + b * sin(n * θ). Describe the graph produced and indicate whether the graph is a circle, rose, limaçon or cardiod. Change the values to those given in each problem.

- 1. a: = 0, b: = 2, n: = 1
- 2. a: = 0, b: = 4, n: = 1
- 3. a: = 0, b: = -6, n: = 1
- 4. a: = 0, b: = 2, n: = 2
- 5. a = 0, b = 2, n = 3
- 6. a = 0, b = -3, n = 4
- 7. a = 1, b = 2, n = 1

95

8. a: = 2, b: =2, n: = 1

- 9. a: = 3, b: = -4, n: = 1
- 10. a: = 2, b: = -5, n: = 1
- 11. How do the curves $r(\theta) = a + b \cos(n\theta)$ and $r(\theta) = a + b \sin(n\theta)$ compare?
- 12. Generalize how the values of *a*, *b*, and *n* produce the different curves.