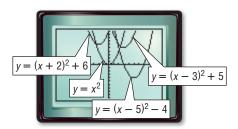
Graphing Quadratic Functions in Vertex Form

Quadratic functions written in the form $y = a(x - h)^2 + k$ are said to be in **vertex form**.


Graph each group of equations on the same screen. Use the standard viewing window. Compare and contrast the graphs.

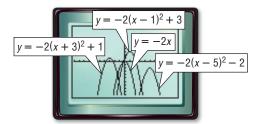
a.
$$v = x^2$$

$$y = (x - 3)^2 + 5$$

$$y = (x + 2)^2 + 6$$

$$y = (x - 5)^2 - 4$$

Each graph opens upward and has the same shape. However, the vertices are different.


Equation	Vertex
$y = x^2$	(0, 0)
$y = (x-3)^2 + 5$	(3, 5)
$y = (x + 2)^2 + 6$	(-2, 6)
$y = (x - 5)^2 - 4$	(5, -4)

b.
$$y = -2x^2$$

$$y = -2(x-1)^2 + 3$$

$$y = -2(x+3)^2 + 1$$

$$y = -2(x-5)^2 - 2$$

Each graph opens downward and has the same shape. However, the vertices are different.

Equation	Vertex
$y = -2x^2$	(0, 0)
$y = -2(x-1)^2 + 3$	(1, 3)
$y = -2(x+3)^2 + 1$	(-3, 1)
$y = -2(x-5)^2 - 2$	(5, -2)

Exercises

- 1. Study the relationship between the equations in vertex form and their vertices. What is the vertex of the graph of $y = a(x - h)^2 + k$?
- 2. Completing the square can be used to change a quadratic equation to vertex form. Copy and complete the steps needed to rewrite $y = x^2 - 2x - 3$ in vertex form.

$$y = x^2 - 2x - 3$$

$$y = (x^2 - 2x + ?) - 3 - ?$$

 $y = (x - ?)^2 - ?$

$$y = (x - ?)^2 - ?$$

Complete the square to rewrite each quadratic equation in vertex form. Then determine the vertex of the graph of the equation and sketch the graph.

3.
$$y = x^2 + 2x - 7$$

4.
$$y = x^2 - 4x + 8$$

CONTENTS

5.
$$y = x^2 + 6x - 1$$

