\qquad
\qquad

On pages 1.2 and 1.3, graph the functions and find the zeros for each.

- $f 1(x)=2 x^{3}-5 x-3$
$f 2(x)=6 x^{3}-25 x^{2}+21 x+10$
$f 3(x)=3 x^{4}-11 x^{3}-3 x^{2}-6 x+8$
What do these functions have in common?
- $f 4(x)=2 x^{3}-5 x^{2}-x+8$
$f 5(x)=x^{3}+3 x-3$
$f 6(x)=4 x^{4}+9 x^{3}-9 x^{2}-15$
What do these functions have in common?

On page 1.6, enter the functions from page 1.2 into the command prgm1.

- How do the two sets that are displayed relate to the function entered?
- Can any combination of the values in the two sets produce a zero of the function? If so, what is the zero? To explore this, define the expression as $\mathrm{f}(x)$. Then replace x with the x-value.

Now on page 1.9 use the prgm1 command to investigate the functions on page 1.3.

- Can you find a combination of the values in the two sets that produce a zero of the function? If so, what is the zero?
- When does the function have a zero but the sets do not produce one?

