Name

In this lesson you will investigate the relationship among the segments formed by intersecting chords in a circle.

Open *chord segments.tns* on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

 1.1
 1.2
 1.3
 1.4
 DEG AUTO REAL

 Segments Formed by Chords in a Circle

 THEOREM:
 If two chords intersect within a circle, the product of the measures of the segments of one chord equals the product of the measures of the segments of the segment

On page 1.2, you will find circle O with chords AB & CD, all labeled with their lengths. As you drag any of the endpoints of the 2 chords, notice how " $a \cong b$ " and " $c \cong d$ " change to reflect the products of each of the chords' 2 segments. The congruent products indicate that the products of the measures of the segments of each chord are consistently equal.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.6.

Name _____

Geometric Proof

On page 1.8, you are presented with a 2-column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with chords AB and CD, that intersect at E.	1. Given
2. $m \angle AEC = m \angle BED$	2.
3. $m \angle BDC = m \angle CAB$	3.
4. $\triangle AEC \sim \triangle BED$	4.
5.	 Corresponding sides in similar triangles are proportionate.
6. AE * BE = CE * DE	6. Product of means equals