Segments Formed by Chords

In this lesson you will investigate the relationship among the segments formed by intersecting chords in a circle.

Open chord segments.tns on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

Name \qquad

Segments Formed by Chords in a Circle
THEOREM: If two chords intersect within a circle, the product of the measures of the segments of one chord equals the product of the measures of the segments of the other.

On page 1.2, you will find circle O with chords $A B \& C D$, all labeled with their lengths. As you drag any of the endpoints of the 2 chords, notice how " $a \cong b$ " and " $\mathrm{c} \cong \mathrm{d}$ " change to reflect the products of each of the chords' 2 segments. The congruent products indicate that the products of the measures of the segments of each chord are consistently equal.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.6.

\#1.3

Angles Formed by Chords

\qquad

Geometric Proof

On page 1.8, you are presented with a 2 -column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with chords AB and CD , that intersect at E.	1. Given
2. $\mathrm{m} \angle \mathrm{AEC}=\mathrm{m} \angle \mathrm{BED}$	2.
3. $\mathrm{m} \angle \mathrm{BDC}=\mathrm{m} \angle \mathrm{CAB}$	3.
4. $\triangle \mathrm{AEC} \sim \Delta \mathrm{BED}$	4.
5.	5. Corresponding sides in similar triangles are
proportionate.	

