USE OF CAS IN TEACHING DIFFERENTIAL CALCULUS

by FIRST PRINCIPLES

We will first define the function to be $f(x)=x^{2}-4 x+3$

Consider the points on the function $y=f(x)$ at x and $x+h$
The co-ordinates of these points are given above. If we use our knowledge of the gradient between points we know that the gradient of the secant will be:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

So for the points on the graph above we have:

$$
\begin{aligned}
m & =\frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

NOTE: It is possible to animate a sequence of pictures, which will demonstrate the idea of a secant approaching the tangent at a point.

For a given function we can easily calculate this using CAS:

Hence the gradient of the secant between the two given points is given by $2 x+h-4$. We can then discuss the idea of the horizontal distance between points becoming smaller and smaller, ie as $h \rightarrow 0$, and hence the gradient of the tangent. Initially this can be calculated by evaluating the expression when $h=0$.

$-\frac{2 \cdot h \cdot x+h^{2}-4 \cdot h}{h}$

```
            2\cdotx+h-4
```

$-2 \cdot x+h-4 \mid h=0 \quad 2 \cdot x-4$

Consider the function $f(x)=2 x^{2}$

$$
\begin{aligned}
\text { Gradient of the secant } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{2(x+h)^{2}-2 x^{2}}{h} \\
& =\frac{4 h x+2 h^{2}}{h} \\
& =4 x+2 h
\end{aligned}
$$

$$
4 \cdot h \cdot x+2 \cdot h^{2}
$$

$$
\frac{4 \cdot h \cdot x+2 \cdot h^{2}}{h} \quad 2 \cdot(2 \cdot x+h)
$$

- $2 \cdot(2 \cdot x+h) \mid h=0 \quad 4 \cdot x$	
	FUNC

$$
\begin{aligned}
\text { Gradient of the tangent } & =\lim _{h \rightarrow 0}(4 x+2 h) \\
& =4 x
\end{aligned}
$$

Use the following functions to find the gradient of the tangent to the curve at any point on the curve:

1. $f(x)=x^{2}$
2. $f(x)=x^{3}-2 x+1$
3. $f(x)=x^{4}-2 x^{3}+1$

Ensure that all working is shown. Include in your calculations the expressions for $f(x+h), f(x+h)-f(x)$ and $\frac{f(x+h)-f(x)}{h}$

How would your calculations change if you want to evaluate the gradient at a given point?

Here we can see that we can use the point $x=1$.
NOTE(for teachers): It can be seen that the use of CAS eliminates the occurrence of incorrect evaluation and simplification of expressions. Also, it is possible to go through this procedure many times in a short period of time.

