

What＇s the Plan？

Concepts

－Units of measurement
－Area
－Place value with money
－Estimation of measurement
－Multiplication as repeated addition
－Problem solving

Materials

－TI－10
－Book：The Ugly Vegetables
－Grid paper
－Garden Grid
－Plant cutout activity sheets
－Crayons or markers
－Glue
－Scissors
－Playing cards or old business cards
－Play money
－Vegetable price tables

Calculator Connections

－Operations $\square \square \square \square$
－Scrolling 《会》
－Problem solving feature＊）
－Place value \square ．
－Constant feature 0pl
－Memory features M^{+}M－MR／MC
－Fix features Fix 0.01

Suggested Age／Grade Level

－Ages 7－8
－Second grade

Overview

After discussing any experiences that the students may have had with gardens， read The Ugly Vegetables written and illustrated by Grace Lin（Charlesbridge Publishing，1999）．Students explore area with nonstandard and standard units of measure．Afterwards，they work in small groups to plan a unique vegetable garden and calculate the costs of plants for the garden．

Assessment

Assessment should be done through student work samples and teacher observation. The following items should be considered.

Teacher questions have been provided throughout the unit for formative assessment.

Teacher observation and student garden plans should be used as a check for student understanding.

Activity A:

Connecting Literature and Mathematics

Begin the activity with a discussion on gardens.
Question to ask:

- What do you know about gardens?

Read The Ugly Vegetables.
Questions to ask:

- How was the young girl's and her mother's garden different from their neighbors' gardens?
- What kinds of plants did they grow?

New Vocabulary:
Area
Chinese vegetable
Plan
Square unit
Venn diagram

Prerequisite Skills:

Students should have an understanding of the concept of length before starting this unit.

- What kinds of plants might you grow in a garden?
- What kinds of tools did the young girl and her mother use to plant and care for their garden?
- What kinds of tools did their neighbors use?
- Why were different tools used for the different gardens?
- What kinds of tools might you use to plant and care for a garden?
- What might you need to know to plan a garden? (Answers may suggest location of garden, climate, soil type, size of land space, sizes of plants, where to find plants, costs of plants, and purpose of garden.)
- How might you find out the size of a land space?
- What kinds of tools might help find answers?

Activity B:
 Exploring Area with the TI-10

Tell students that they will look at one way to measure size and ask for a volunteer to stand against a sheet of butcher block paper.

1. Trace around the student.

Teaching Tip:
Help students visualize space covered by a patio or the space inside a sandbox.

Question to ask:

- What can you say about the space inside the traced outline?

Tell students that sometimes we need to know the size or how much space is inside an outline.
Question to ask:

- When might you want to know the size or how much space is inside an outline?

Tell students that in this activity, they will be finding out how much space is covered by different objects in the classroom.
2. Distribute playing cards or old business cards to students.

Direct students to work in pairs to find how many cards cover their desktop.
Tell students that their $\mathrm{TI}-10$ can help them keep track of the number of cards used to cover the desktop.
One student may count on the $\mathrm{Tl}-10$ while the other student touches each card.
3. Press (:) to begin.
4. Press $₫ \subset$ to clear anything previously stored in memory.
5. Press ©. The screen is blank (except for the cursor), the memory is clear, and you are ready to get started.
Ask students to look at their cards and explain that they will be adding the cards one at a time.
6. Press Opl.
7. Press \square because you will be counting each card one at a time.
8. Press Opl to let the $\mathrm{TI}-10$ know that you are ready to count.
9. Press 0 .
10. Press Opl to begin counting.

The TI-10 displays:

$11+1$
1

11. Press Opl to continue counting.

Questions to ask:

- How many cards covered the desktop?
- How might your cards be arranged to count another way with your $\mathrm{Tl}-10$? (rows and columns)
- How many rows of cards might be arranged?
- How many cards are in each row?

For example, if ten cards are in a row:

- Reset the TI-10.
- Press Opl.
- Press $\uparrow 10$ because you will be counting cards by rows of ten.
- Press ODl to let the Tl-10 know that you are ready to count.
- Press 0 to begin counting at zero.
- Press Opl to begin counting.
- Press Opl to continue counting.

When you've counted six rows, the $\mathrm{TI}-10$ displays:

Tell students that the space inside the outline of the desktop is also called area and it is measured by covering.

Question to ask:

- What might you say about measuring the area of the desktop?

Instruct the pairs of students to record their findings by writing the number and kind of objects used to measure each area.

Teaching Tip:

It is helpful when the same number of cards is in each row.

Resetting the TI-10:
Press (:0) to wake it up if it has turned off.

Press (AC) if you need to clear the memory.

Press (bat to clear the display.

Teaching Tip:

Provide students the opportunity to explore covering the desktop and other small areas in the classroom with the cards. It is best to begin with smaller areas. Make a list of the areas to measure by covering in the room.

Teaching Tip:

While creating the list of areas to measure,
it is important to include curves or other areas that are not inside straight outlines. Always include estimates before the measures.

Questions to ask:

- How would you describe your findings? (Guide students to the idea that the larger the measuring object, the fewer were needed to cover the object.)
- How is this a useful or not useful way to measure area? (Guide students to the idea that a standard/universal measure is needed.)

Discuss and review with students the usefulness of having standard units of measuring area for communication.
12. Pass out two centimeter grid paper which is located in Appendix A.

Questions to ask:

- What might you say about the size of the squares on the grid paper? (Answers should suggest that the squares are all the same size.)
- How might you and your partner find the number of squares to cover the desktop with the grid paper?
- How might the TI-10 help?

Activity C:

Planning a Garden Area

1. Revisit The Ugly Vegetables.

Question to ask:

- How would you use area to help plan a garden?

2. Pass out the Garden Grid, located at the end of the unit, to students and tell them that they will work in pairs to make their garden plan on paper with the following guidelines.

- Each small grid square on the plan paper represents one large square in the actual garden plot.
- Because there is limited space, the garden plot will be in the shape of a square.
- There are ten squares in each row and a total of ten rows. The area of the garden will be 100 squares.

Activity D:

Planning a Garden with the TI-10
Questions to ask:

- Since you have worked with your partner in finding the area of your desktop, how might you make a paper garden grid with the area of one hundred squares?

Remind students that there are ten squares in a row.

1. Reset the TI-10.
2. Press 0 pl .
3. Press $\square 0$ because you will be counting ten squares in each row.
4. Press Opl to let the $\mathrm{TI}-10$ know you are ready to begin counting.
5. Press 0 .
6. Press 0 pl to begin counting the number of rows.
7. Press Opl to continue counting.

When you have skip counted ten times, the Tl-10 displays:

Questions to ask:

- How did you know when to stop counting?
- How many rows will you need?
- How did the TI-10 help?
- Will this make a garden that is in the shape of a square? How do you know?

8. Pass out the Plant Cutout Grids.

Resetting the TI-10:
Press (:0) to wake it up if it has turned off.

Press (AC) if you need to clear the memory.

Press (6ath to clear the display.

Teaching Tip:

It is not necessary to cover all 100 squares. Some garden plans may be less because of the selection of plants.

Resetting the Tl-10:
Press (:) to wake it up if it has turned off.

Press © $₫ C$ if you need to clear the memory.

Press © (at to clear the display.

Teaching Tip:

One pepper plant and two tomato plants have been chosen as an example. Be sure students use the correct number of squares for the actual plants chosen.

Explain that the grids show how many squares (square units) a plant will cover in the garden. Ask them to choose the number and kinds of plants that they intend to use.

Question to ask:

- How might the $\mathrm{TI}-10$ help find the number of squares used?
- How can you find the total area of one pepper plant and two tomato plants?

9. Reset the TI-10.
10. Press $4 \square \square 9 \square 9 \square \square$ to add the area of the one pepper plant and the two tomato plants.

The $\mathrm{TI}-10$ displays:

Question to ask:

- How might you find the total area of one pepper plant and two tomato plants and the area remaining for the plants?

11. Reset the TI-10.
12. Press 00 Enter to enter the total number of squares (square units) in the garden plan.

The TI-10 displays:

13. Press $M+$ to remember the one hundred squares (square units).
14. Press 4 Enter to enter the number of squares needed for the pepper plant.

The TI-10 displays:

15. Press $M-$ to subtract the area of the pepper plant from the total area of the garden.
16. Press $9 \square 9$ Enter to enter the number of squares needed for two tomato plant s.

The TI-10 displays:
$4+4: \quad 18$
17. Press $M-$ to subtract the area of the two tomato plants from the total area of the garden.
18. Press $M R / M C$ to find and recall the area of the garden remaining for other plants.

The TI-10 displays:
78

You have 78 squares (square units) left for planting. You can press © to continue to subtract more plants.

Have students cut out the plants they have selected and continue planning their garden in pairs or small groups.

Activity F:

Finding Garden Prices
Once students have determined what plants they will use in their garden, they will need to determine how much the plants will cost.

1. Pass out the Vegetable Price Tables and play money.

Question to ask:

- How might the Tl-10 help you find the total cost of your plants?

2. Reset the TI-10.
3. Press Fix 0.01 Enter to enter your dollars and cents using decimals.
4. Press (Mode to view the menu screen for division results.
5. Press to underline the decimal choice.

Teaching Tip:

The examples in this activity are shown with one pepper plant and two tomato plants. Be sure to substitute the actual amounts selected by students.

Resetting the TI-10:
Press (5) to wake it up if it has turned off.

Press $\mathbb{A C}$ if you need to clear the memory.

Press (balt to clear the display.

Teaching Tip:
Play money may be useful to help students understand this operation.

The TI-10 displays:

6. Press Enter.
7. Press (Mode to exit the menu screen.
8. Press $1000 \div 4$ Enter $M+$ to add and remember the price of the pepper plant.

The TI-10 displays:

$$
1.10104=10.25
$$

9. Press $00 \pm \square 50$ Enter $0+$ to add and remember the price of the two tomato plants.

The $\mathrm{TI}-10$ displays:

$$
.50+50=1.00
$$

10. Press MR/MC to find and recall the total cost of your plants.

The $\mathrm{TI}-10$ displays:

$$
1.5
$$

11. Press © to continue to add more plants.

Encourage students to work in pairs or small groups with their play money to explore different ways of showing each amount.

Question to ask:

- How might the $\mathrm{TI}-10$ help show different ways?

12. Reset the TI-10.
13. Press for problem solving.
14. Press Auto to take a shortcut to the manual mode.
15. Press 102 to show the cost of the plants.
16. Press \square. to find other ways of showing this amount.
17. Press 0.01 to show how you might pay for the plants with pennies. How many are needed?

The TI-10 displays:

$$
\text { 1. } 5
$$

125
18. Press 0.1 to show how you might pay this amount with dimes. Is this enough money? Why?

The $\mathrm{TI}-10$ displays:

```
1.5
|:...
```

19. Press 1. to show the whole dollars that make \$1.25.

The TI-10 displays:

Conclusion

- Give students a budget for their garden. Ask them to plan the number and kinds of plants that would fit in the budget. The total amount of the budget may be entered into memory M^{+} and the cost of each plant price subtracted $M-$ from the total.
- Provide opportunities for students to use their own plants with estimated areas and prices using the blank price table and grid paper.

Extension

- Students may want to make a large paper garden within the classroom. Gridded butcher block paper may be used for this purpose or students can create their own butcher block grid.
- Some students may be interested in planting a real garden. Plan a trip to a local nursery or farm to explore prices, sizes, and care of plants.

Plant Cutout Grid

Plant Cutout Grid

Beans

Chinese Plant Cutout Grid

Vegetable Prices

Plant	Area of Each Plant	Price
Beans	1 square unit	4 for \$2.00
Beets	4 square units	\$1.00 each
Carrots	4 square units	\$1.50 each
Corn	4 square units	2 for \$1.00
Eggplant	9 square units	\$2.00 each
Lettuce	4 square units	5 for \$1.00
Okra	1 square unit	10 for \$1.00
Pepper	4 square units	4 for \$1.00
Potato	9 square units	\$1.00 each
Pumpkin	16 square units	2 for \$5.00
Tomato	9 square units	\$. 50 each
Zucchini	9 square units	\$2.00 each

Chinese Vegetable Prices

Plant	Area of Each Plant	Price
Fwo loo fwo Chinese squash	16 square units	$\$ 2.00$ each
Jeou tsay Chinese leeks	1 square unit	4 for $\$ 2.00$
Kong shin tsay Chinese celery	1 square unit	2 for $\$ 1.00$
Kuu gua Chinese melon	9 square units	$\$ 1.50$ each
Sheau hwang gua Chinese cucumber	4 square units	4 for $\$ 1.00$
Shiann tsay Chinese spinach	4 square units	5 for $\$ 1.00$
Sy gua Chinese eggplant	9 square units	$\$ 1.00$ each
Torng hau Chinese lettuce	9 square units	$\$.00$ each

Vegetable Prices

Plant	Area of Each Plant	Price

