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	Problem 1 – The Derivative of y = ln(x)

	If (x, y) is a point on y = f(x) and y = g(x) is the inverse of f(x), then (y, x) is a point on g(x). We know that e0 = 1 and ln(1) = 0, so (0, 1) is a point on y = ex and (1, 0) is a point on y = ln(x). We could do this for several points and keep getting the same inverse results. 
Thus, if y = ex, then x = ey will be equivalent to y = ln(x) because they are inverses of one another. Now we can take the implicit derivative with respect to x of x = ey.
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	Use the limit command to test this formula. Be careful with your parentheses.
· Find 
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· Do the same with 
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· What is 
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	· Use the derivative command to find the derivative of the logarithmic function f(x) = ln(x).
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	Problem 2 – The Derivative of y = loga(x)

	What happens if our logarithm has a base other than e? We need to know how to take the derivative of the function y = loga(x).

First we want to compare y1 = ln(x) and y2 = log2(x).
To enter log2(x), use the alpha keys to spell out log.
Within the parentheses, enter the expression, then the base.
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	· Graph both functions (y1 = ln(x) and y2 = log2(x)) on the same set of axes. Sketch your graph to the right. What do you notice?
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	· Do the same steps with y1 = ln(x) and y3 = log4(x). What do you notice?
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	· Simplify the following ratios.
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	Sometimes the ratio 
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 is written as ln(x) = ln(a) ∙ loga(x). We can rewrite this ratio as 
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 and call it an identity.

	· Graph the following functions on the same set of axes: y1 = ln(x), y2 = ln(2) ∙ log2(x), y3 = ln(3) ∙ log3(x). What was the result?
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	What happens when we take the derivative of y = loga(x). Use the derivative command to find the derivatives of the functions below.

f(x) = log2(x)
g(x) = log3(x)
h(x) = loga(x)
· Do you notice a pattern?

	What does log2(e) equal? If we use the formula from earlier in this class, we get 
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Therefore, the general result is 
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	Problem 3 – Derivative of Exponential and Logarithmic Functions Using the Chain Rule

	Now we want to take the derivative of more complicated functions:

Recall: 
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 where u depends on x.

· Suppose that y = loga(u), where u depends on x. Using the chain rule, take the derivative of this function.


	Find the derivative of the following functions with the chain rule.
Identify u(x) and a for each function before you find the derivative.

· f(x) = 
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u(x)=__________
a = ____________

f′(x) = ________________

· g(x) = 
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u(x)=__________
a = ____________

g′(x) = ________________
· h(x) = log3(x4 + 7)
u(x)=__________
a = ____________

h′(x) = ________________
· j(x) = 
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u(x)=__________
a = ____________

j′(x) = ________________
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