Logistic Growth, Differential Equations, Slope Fields

During the first day of the institute we simulate the spread of a disease through a class with a random number generator. This generates logistic data similar to the following table.

Day	Number Infected
1	1
2	2
3	4
4	8
5	13
6	20
7	24
8	25

We use the data analysis features of the calculator to create a scatter plot and find a logistic regression curve to fit the data.

F17 F20			
list1	list2	list3	list.4
$\begin{array}{\|l} \hline 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$	$\begin{aligned} & 8 \\ & 13 \\ & 20 \\ & 24 \\ & 25 \\ & \hline \end{aligned}$		
1ist2[9]=			
MAIN	RAD Allt	FUNC	2\%

Later in the week we revisit the data and use analytic methods to find the solution to the differential equation for logistic growth

$$
y^{\prime}=k y(26-y) .
$$

C: deSolve(y'=k*y*(26-y) and $y(1)=1, x, y)$
C: solve $\left(\mathrm{y}=26 * e^{\wedge}(26 * \mathrm{k} * \mathrm{x}) /\left(e^{\wedge}(26 * \mathrm{k} * \mathrm{x})+25 * e^{\wedge}(26 * \mathrm{k})\right), \mathrm{k}\right) \mid \mathrm{x}=5$ and $\mathrm{y}=13$ C: $1 \mathrm{n}(5) / 52 \rightarrow \mathrm{k}$
C:Define $\mathrm{y} 1(\mathrm{x})=26 * e^{\wedge}(26 * \mathrm{k} * \mathrm{x}) /\left(e^{\wedge}(26 * \mathrm{k} * \mathrm{x})+25 * e^{\wedge}(26 * \mathrm{k})\right)$

We then graph the solution along with the original scatter plot.

We can use Differential Equation graphing mode to see numerical and visual solutions to the differential equation without finding an analytic solution. The visual solution will include a slope field.

The numerical solution utilizes tables.

The TI-89 helps students investigate differential equations analytically, graphically and numerically and see relationships between the three approaches.

