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Abstract: This activity is an applications of derivatives and of definite integrals. It
introduces students to an interesting property of cubics and a method of proving that
property using the TI-89 scripts. They then use the symbolic capacity of their calculator
to generalize upon specific results.

NCTM Principles and Standards:

Algebra standards

a) Understand patterns, relations, and functions

b) generalize patterns using explicitly defined and recursively defined functions;

c) analyze functions of one variable by investigating rates of change, intercepts, zeros,
asymptotes, and local and global behavior;

d) use symbolic algebra to represent and explain mathematical relationships;

e) judge the meaning, utility, and reasonableness of the results of symbol
manipulations, including those carried out by technology.

f) draw reasonable conclusions about a situation being modeled.

Problem Solving Standard build new mathematical knowledge through problem

solving; solve problems that arise in mathematics and in other contexts; apply and adapt a

variety of appropriate strategies to solve problems; monitor and reflect on the process of

mathematical problem solving.

Reasoning and Proof Standard

a) recognize reasoning and proof as fundamental aspects of mathematics;

b) make and investigate mathematical conjectures;

c) develop and evaluate mathematical arguments and proofs;

d) select and use various types of reasoning and methods of proof.

Key topic: Applications of derivatives. Tangent line. Application of Definite Integrals -
area between curves. Scripts, formal proofs.

Degree of Difficulty: Advanced

Needed Materials: TI-89 calculator

Situation: Cubic polynomials have many interesting properties. In this activity we’ll use
calculus to investigate one of them with the aid of the TI-89 calculator. Consider a line
tangent to a cubic. Where else does this line cross the cubic? Construct a line tangent to
the cubic at that point, too. Two regions are formed. What is the ratio of their areas as
indicated by the two shaded regions in these graphs?
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Step-By-Step Solution with a particular example:
Take a look at the graph of a particular cubic polynomial: y = 2x° + 3x* - 36x + 12. Using
the window: [-7, 5], [- 200 150]

Pick a point P on the graph, say (-2, 80) and draw the tangent line, L, through P to the
graph. You can get the calculator to find the equation of the tangent line by using a
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The area between line M and the curve C is

2.5
[((2x3+3x2-36x +12) - (16.5(x - 2.5) - 28))dx = 1093.5
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The area between line L and the curve is I((SO -24(x+2)-(2x3+3x2-36x+12))dx =
-2
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=16. Does this always work?

Let’s look at this more analytically. Here we are writing essentially the same commands
as we did with the numerical example - but with variables. In the process, we are
creating a proof of the fact that the ratio of the areas of these two regions is always 16:1
no matter what the equation of the cubic is and no matter what point (z, f(z)) we pick on

it!
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