\qquad
\qquad

Open the TI-Nspire document Exploring_Transformations.tns.

In this activity, you will translate and reflect shapes in the coordinate plane. You will begin with a triangle with vertices $\boldsymbol{A}(\mathbf{1}, 2), \boldsymbol{B}(4,7)$, and $C(7,3)$.

Exploring Transformations

Move to the next page to transform figures in a coordinate plane by using translations and reflections.

Move to page 1.2.

1. Drag point H left and right to translate the triangle horizontally. Drag point V up and down to translate the triangle vertically.
a. Identify the coordinates of points B^{\prime} and C^{\prime} if the triangle is translated 4 units to the left. How would you determine the coordinates mathematically?
b. Identify the coordinates of points B^{\prime} and C^{\prime} if the triangle is translated 4 units to the left and 5 units down. How would you determine the coordinates mathematically?
2. How must you translate $\triangle A B C$ for point B^{\prime} to have coordinates $(3,9)$?
3. Herschel moved point A to produce a new triangle. He then translated $\triangle A B C$ left 2 and down 5.
a. Where would Herschel have placed point A for the coordinates of point A^{\prime} to be $(-4,-3)$?
b. Explain how you can determine the coordinates of point A mathematically.

Move to page 2.1.

4. Reflect the triangle over the x-axis.
a. Identify the coordinates of points B^{\prime} and C^{\prime} after the triangle is reflected over the x-axis.
b. How would you determine the coordinates mathematically?
5. Reset the figure by moving the point back to the N position. Reflect the triangle over the y-axis.
a. Identify the coordinates of points B^{\prime} and C^{\prime} after the triangle is reflected over the y-axis.
b. How would you determine the coordinates mathematically?
\qquad
\qquad
6. Describe how a reflection is different from a translation.
7. Reset the figure by moving the point back to the N position.
a. Predict the coordinates of points A^{\prime}, B^{\prime}, and C^{\prime} if the triangle is reflected over both the x-axis and the y-axis.
b. Reflect the figure over both the x-axis and the y-axis and test your predictions.
c. How would you determine the coordinates of A^{\prime}, B^{\prime}, and C^{\prime} mathematically?

Move to page 3.1.

8. Drag the points labeled V and H so that the \mathbf{L} lies completely in Quadrant IV. What translations are needed so that the image of \mathbf{L} lies completely in Quadrant IV?

Move to page 4.1.

9. Move the \mathbf{L} to Quadrant IV by using the open circles in the upper left corner of the screen.
a. What transformations were necessary for the image of \mathbf{L} to appear in Quadrant IV?
b. Does the order in which the \mathbf{L} is reflected matter? Why or why not?
10. In the transformations on pages 3.1 and 4.1 , why do you think that the letter \mathbf{L} was used to illustrate the concept of transformations rather than the letter \mathbf{H} ?
a. Justify your answer mathematically or with a sketch.
b. What other letters would be good choices to illustrate transformations using reflections?
c. What letters are not good choices to illustrate transformations using reflections? Explain your answer.
