\qquad
\qquad

Problem 1 - Derivative Using the Power Rule

Recall the Power Rule $\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$.

1. Based on the Power Rule, what do you think the derivative of $f(x)=(2 x+1)^{2}$ is?

Graph the derivative of the function and your conjecture about the derivative. Go to the $\mathrm{Y}=$ Editor. In y1, type $(\mathbf{2 x + 1})^{\wedge} \mathbf{2}$. In $\mathbf{y 2}$, type $\mathbf{n D e r i v}(\mathbf{y 1}(\mathbf{x}), \mathbf{x})$. To access the nDeriv command, go to the Math menu (2nd + [MATH]) and select B:Calculus > A:nDeriv(. In y3, type your conjecture for the derivative of $f(x)=(2 x+1)^{2}$. Highlight $\mathbf{y} 1$ and press F4 to unselect this function, and press $\square+$ F3 to graph $\mathbf{y 2}$ and $\mathbf{y 3}$.

Note: The graphs may take a minute to appear. If the graphs of $\mathbf{y} 2$ and $\mathbf{y} 3$ coincide, your conjecture for the derivative may be correct. If your conjecture is incorrect, the graphs of $\mathbf{y} \mathbf{2}$ and y3 will not coincide.
2. Does your conjecture appear to be correct? If not, how can you change your conjecture?
3. Expand the binomial $(2 x+1)^{2}$. Take the derivative of each term. How does this compare with your answer to Question 1?

Problem 2 - The Chain Rule

The following are 'true' statements that can be verified on the TI-89.

$$
\begin{array}{ll}
d\left((5 x+7)^{\wedge} 3, x\right)=3 \cdot(5 x+7)^{\wedge} 2 \cdot 5 x & \text { true } \\
d\left(\left(x^{\wedge} 3+7\right)^{\wedge} 5, x\right)=5 \cdot\left(x^{\wedge} 3+7\right)^{\wedge} 4 \cdot 3 x^{\wedge} 2 & \text { true } \\
d\left(\left(x^{\wedge} 2+6\right)^{\wedge} 4, x\right)=4 \cdot\left(x^{\wedge} 2+6\right)^{\wedge} 3 \cdot 2 x & \text { true }
\end{array}
$$

4. What patterns do you see? Using any information that you can infer from these statements, create a rule for finding the derivative of these functions. Discuss the patterns you see and the rule you created with a partner.
5. Using your rule from Question 4 , what is $\frac{d}{d x}\left((3 x+2)^{2}\right)$?

Verify your answer by typing your statement on the entry line of your TI-89. If you are correct, the TI-89 will return the word, 'true'. If you are incorrect, the TI-89 will return a false statement. If you are incorrect, try again by editing your statement and pressing ENTER again.
6. What is $\frac{d}{d x}\left((7 x+2)^{3}\right)$? Verify your answer.
7. What is $\frac{d}{d x}\left(\left(5 x^{2}+2 x+3\right)^{4}\right)$? Verify your answer.

The derivative rule you have just observed is called the Chain Rule. It is used to take the derivative of composite functions. The Chain Rule is $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$. First, take the derivative of the "outside function" at $g(x)$. Then, multiply this by the derivative of the "inside function."
8. Use the Chain Rule to create three additional true statements. Verify your answers.

Problem 3 - Homework Problems

Evaluate the following derivatives using the Chain Rule. Verify your answers.

1. $\frac{d}{d x}\left(\left(4 x^{3}+1\right)^{2}\right)=$
2. $\frac{d}{d x}\left((-5 x+10)^{7}\right)=$
3. $\frac{d}{d t}\left(\left(2 t^{5}-4 t^{3}+2 t-1\right)^{2}\right)=$
4. $\frac{d}{d x}\left(\left(x^{2}+5\right)^{-2}\right)=$
5. $\frac{d}{d z}\left(\left(z^{3}-3 z^{2}+4\right)^{-3}\right)=$
