\qquad
\qquad

Problem 1 - Using the Product Rule

1. State the product rule for a function of the form $\boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{v}(\boldsymbol{x})$.
2. Now apply the product rule to the function $\sin (x) \cdot \ln (x)$.
3. Which part(s) of the following statement do you agree with? Disagree with? Explain.
$\int \frac{d}{d x}(f(x)) d x=\frac{d}{d x}\left(\int f(x) d x\right)=f(x)$
4. What is the integral of the left side of the product rule?
$\int\left(\frac{d}{d x}(u(x) \cdot v(x)) d x=\right.$
5. What is the integral of the right side?
$\int\left(u(x) \cdot \frac{d v}{d x}+v(x) \cdot \frac{d u}{d x}\right) d x=$
6. Explain the relationship between the areas shown in the graph (page 1.12) and the equation shown below.
$\int_{v_{1}}^{v_{2}} u \cdot d v=u \cdot v-\int_{u_{1}}^{u_{2}} v \cdot d u$

Problem 2 - Examples of Integration by Parts

7. Use the method of integration by parts to compute the integral of $\ln (\boldsymbol{x})$. (Check your result by running the program intbyparts($\ln (\boldsymbol{x}), \mathbf{1})$ typing result, and pressing enter.)
8. Find $\int \cos (\ln (x)) d x$
9. Substitute the previous result for $\boldsymbol{\operatorname { c o s }}(\ln (x))$ into the integration by parts result for $\boldsymbol{\operatorname { s i n }}(\ln (x))$.

Problem 3 - Practice using Integration by Parts

10. Now try the following using integration by parts, then check your answers using the intbyparts() program and typing result and press enter.
a. $\int \tan ^{-1}(x) d x$
b. $\int x^{2} \cdot e^{x} d x$
c. $\int x \tan ^{-1}(x) d x$
d. $\int x \cos (2 x+1) d x$
11. (Extension 1) Does it matter in which order $\boldsymbol{u}(\boldsymbol{x})$ and $\boldsymbol{v}(\boldsymbol{x})$ are selected for the method of integration by parts?
12. (Extension 2) Is there likely to be an integration rule based upon the quotient rule just as integration by parts was based upon the product rule?
