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|ntegra| Calculus In this chapter we will use various features of the TI-86 to
investigate some of the fundamental concepts of the
integral calculus. Topics discussed in this chapter include:

(a) The computation of Riemann sums using the sum
and seq commands.

(b) The numerical approximation of Riemann integrals
using the fnint command.

(c) The trapezoid, midpoint, and Simpson
approximation techniques.

(d) A probabilistic interpretation of the average value
of a function.

. T d |}
(e) Graphical verification that E}—_[_!f(t)dt} =)

§1 — The seq and sum Commands

The seq and sum commands give an easy way to calculate Riemann sums on the calculator. The two

commands are accessed via the MATH MISC menu (press [MATH] (MISC)). The seq command has
the syntax

seq(expression, variablename, begin, end, increment).

It returns a real list in which the elements are the values of the expression evaluated at successive
incremented values of the variable starting from begin and ending at the last incremented value of the
variable that is no greater than end.

(2 %+l1:x%:3:5.8.9)

For example, Sey 535718115
seq(2x+1, 7, 3, 5, 0.5) and seq(2v+1, , 3, 5.25, 0.5) SRk L s HpSela £ 820
78918 112

both return the list {7, 8, 9, 10, 11} as shown in (6.1.1).

(6.1.1)

Due to the fact that the machine only does approximate work, the end value of the seq command
should be taken to be half an increment greater than the desired true ending value when the begin,
end, and increment values are not integer values. Otherwise, your list may be prematurely truncated.
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Integral Calculus (Continued)

1. As an illustration, seq(3x, x, 1, 2+1/3, 2/3) returns
{3, 5} instead of the desired {3, 5, 7}, whereas
seq(3x, x, 1, 2+2/3, 2/3) returns {3, 5, 7} as expected.
See (6.1.2).

2. The sum command sums the elements of a list. Thus
sum seq(3x, x, 1, 2+2/3, 2/3)

returns 15 as shown in (6.1.3) since we are summing
the sequence (3, 5, 7).

§2 - Riemann Sums

(6.1.2)

(6.1.3)

sed(3x.x%,1,2+1-3,273)

3 53
seoq(3u:x%,1,2+42-3, 2732

337

SUM sed(3x,x, 1, 2+273,
2,30

13

We now apply the sum and seq commands to calculate Riemann sums for a function f over the
interval [a, b]. Using standard notation, we take Ar =(b—a)/n and x, = a +iAx fori =0, 1, 2,..., n.
Then the left, right, and midpoint Riemann sums, denoted by LS(n), RS(n), MID(n) are given by

Ax(f(2)+ f(z)+. +1(2,)
where 2, =, , for LS(n), 2, =, for RS(n), and 2, =(x,_, +; )/2 for MID(n). Consequently,

(Ar)sum seq(f(x), x, a, b — Ax/2, Ax),
(Axr)sum seq(f(x), x, a + Ax, b + Ax/2, Ax),
(Ax)sum seq(f(x), x, a + Ax/2, b, Ar)

will be the syntax of the computations for LS(n), RS(n), and MID(n), respectively. Note that in
each of the three arguments, we have added half an increment to the theoretical end value.

As a specific example, for f(x) = V&’ +1 over the
interval [1, 4], we see in (6.2.1), (6.2.2), and (6.2.3) that

LS(113) = 12.7833125814,
RS(113) = 12.9598093297, and
MID(113) = 12.8713921341.

Note also in (6.2.1)-(6.2.3) that we have stored the three
Riemann sums in the variables LS, RS, and MID.

Incidentally, if we use the theoretical end values

4 —3/113, 4, and 4 — 3/226 for LS(113), RS(113), and
MID(113) the TI-86 prematurely truncates the sums
and gives 12.5713648609, 12. 7457670886 and
12.6583980656, respectively.

(6.2.1)

(6.2.2)

(6.2.3)

(34113 2sum seyq(J(x 3+
:':X, 1.4-3/226, 3-’113)

+LS

12.7833125814
(3-1130sum sexdf (x 3+
1023, 1437113, 443226,
3711352RS

12.9598893297
(371132sum_sea (L 3+
12,%:1+3-226:4,3-113)
+MID

12.8713921341
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Integral Calculus (Continued)

When computing and storing the left, right, and midpoint Riemann sums as in (6.2. 1)-(6.2.3), it is
advantageous to use the ENTRY feature of the calculator to recall a previous command line. The
recalled command line can then be edited. For example, with the display as in (6.2.1), press to
clear the display and then [ENTRY] to retype the command line in (6.2.1). Then edit the command
line with the aid of the arrow keys, and the delete/insert key to obtain the command line in (6.2.2).
Finally, press to compute and store the right Riemann sum.

The size of a list that the TI-86 can sum is limited by the available free memory. With 96500 bytes
of free memory you can sum a list of about 9600 terms. With 45500 bytes of free memory you can a
sum a list of about 4500 terms.

§3 - Trapezoid and Simpson Approximations

The Trapezoidal and Simpson approximations with » subdivisions are given by
TRAP(n) = (LS(n) + RS(n))/2
SIMP(n) = (2MID(n) + TRAP(n))/3.

In (6.3.1) we see that TRAP(113) = 12.8715609556 and (LS+RS) /23 TRAP
SIMP(113) = 12.8714484079 = J2? h CMIDATRAPS 5 o o0ae
MP(113) = 12. or fla) = va” +1 over the 157531 4454079

interval [1, 4].

(6.3.1)
§4 — The NINT Program
In (6.4.1)-(6.4.4) we use the NINT program given in \E‘i‘é {Pé‘::isf:‘itg
Appendix A of this book to verify the results in Sections 2
and 3.
FRFE 1IND  200M TRACE GRAFH
DELF ISELCTH
(6.4.1)
Readers are encouraged to use the methods found in Ni‘i”
Sections 2 and 3 rather than the program found in §=4
Appendix A. The rationale is that actually constructing the n=113
Riemann sums will greatly enhance the understanding of
this important concept.
(6.4.2)
n=113 :
LEFT=
12.7833125814
RIGHT=
12.9598893297
TRAPEZ0ID=
12.8715689556
(6.4.3)
TRAPEZOID=
12.8715689556
MIDPOIMT=
12. 8713921341
SIMPSON=
12.38714484879
Done
(6.4.4)
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Integral Calculus (Continued)

§5 — The fnint Command

The fnInt command finds a numerical approximation for a definite integral. The command is
accessed via the CALC menu (press [cALC)). It has the syntax

L.

fnInt(expression, variable name, lower limit, upper [ﬁn-it).

The accuracy of the approximation is controlled by
the tol variable, which is found by pressing
[MEM] (TOL). See (6.5.1). The default tol setting is
1x107°.

TOLERAHCE
tol=1e-5
a4=,881

(6.5.1)

For most integration purposes, the default setting is a good compromise. A smaller value for tol will
give a better approximation but will require a longer time for the TI-86 to produce the result. A larger
value will require less time but will give less accurate results. Any positive number greater than or

equal to 1x 10

-12

setting is 1 x 107",

2. In (6.5.2) we obtain approximations for

[ Ldz, and [ﬁ] [le* da.

In addition to computing the value of the definite
integral, the fnInt command generates a value
fnIntErr that indicates the possible integration
error. After computing the value of an integral using
fnlnt, to see the value of fnIntErr press

[CATLG-VARS] (ALL) [2nd] [aipha] [F] (=] (=] [ENTER].

can be used as the tol variable setting. Unless stated otherwise, we assume the tol

fnIntd{l x.:x:1,22
. 63314712856
ClAT2addfnlIntde™ -(xe
A2)¥sE,1)
. 341344746868
fnlntErr
2.08215065€ -6

(6.5.2)

Note: We find that accessing the
fnIntErr variable is usually more
trouble than it is worth. Its value will
always be a positive or negative value
whose magnitude is less than tol.
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Integral Calculus (Continued)

§6 — A Shortcut

Keying in the sequence of steps necessary to use fnInt to compute an integral can become a tedious
exercise if you have more than a few integrals to calculate. The following method can be used to

expedite the process.

Step (1).

Step (2).

Enter the integrand as y1 in the (y(x)=) graph editor. Enter fnInt(y1, x, A, B) as
y2 in the (y(x)=) graph editor.
Return to the home screen (press [auiT]) and use the key to store the
desired lower limit in the variable A and the desired upper limit in the variable B.
Then press [alpha] ¥ to compute the integral.

la. As an illustration, we use the shortcut method to show that

["e* da = 2.10555483663, and

il

j"e--*z’g dar= 1.24993044465.

Step (1) for computing the two integrals is shown in (6.6.1). Step (2) is shown in (6.6.2) and

(6.6.3).
Floti Flotz FPlots -1+A [EET=]
sglBe™ -(xi 2y =1 A
saZBfnlntdgl. % A.B> 3+B % 3+B %
uZ gz
2.168555483663 1.24993644465
IeutﬂFI nher I derd | ders | Fnint ¥
(6.6.1) (6.6.2) (6.6.3)
Z2a. For a second illustration, we show that
['sin(x*)da = 436865542924, and
[ sin(+*)da =.804776489344.
Step (1) for computing the two integrals is shown in (6.6.4). Step (2) is shown in (6.6.5) and
(6.6.6).
Floti Flotz Plot: 1=A [ZET=]
~glBsin (xE) i a
wHZBfnInt (el % A-B2 43R 4 23B 2
oz o2
. 436865542924 . BB4776489344
FIFREl WIND Z00M TRACE GRAFH
INSF_| DELF FSELCTR

(6.6.4)

(6.6.5)

(6.6.6)
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Integral Calculus (Continued)

§7 — Average Value of a Function

The simple program AVGF listed on the right can be used
to give a probabilistic justification for the reason why

[b . a ]ff (@)da

is called the average value of the function f over the
interval [a, b]. The program uses the rand command to
randomly select n points ', ,, ..., x, in the interval [a, b]
and then it computes the average

AVG = (fle) + flw,) + ... + flx,))/n.
A few comments regarding the rand command are in
order. The command is found in the PROB submenu of
the MATH menu (press [MATH] (PROB)). The
command generates and returns a random number x in

the interval (0, 1). To reseed this random number
generator, store an integer value to rand. For example,

0 - rand, -2 - rand, and 5 - rand will each reseed the
random number generator. (0 > rand gives the
factory-set seed value.) We suggest you occasionally
reseed when using the AVGF program.

The program is run the same way the NINT program in Appendix A is run. In (6.7.1)~(6.7.9) below we

AVGF
:Input "a=", A
:Input "b=",B
:Input "n=" N
:@-SM
tFor(K,1,N,1)
:rand-R
: (B=A)R+A>x
:y1+SM-=SM
:End
: SM/N-AVG

:Disp "AVG=",6AVG

run the program numerous times for the case f(x) = 1/x, a = 1, b = 4. Since

1Vpe 1 -
(g]_[ ;d;t‘ =(In4) /3 =0.462098120373,

the data contained in (6.7.1)—(6.7.9) is consistent with what we expect to see.

Floti Flotz Flot: -Z2rand AVIGF
~a1817% =2 3=1
b=4
n=16a
ALG=
491185167453
|_ HIND 200M TRACE GRAFH |_ ]
% IMN5F I DELF ISELCTH ! nFr ncr 1 rvand Irandink
(6.7.1) (6.7.2) (6.7.3)
=1 a=1 =1
b= =4 b=
n=z208 n=o8 n=ro
ALG= AUG= AUG=
467414991762 081411844893 4518681364721
Daone Done ]
(6.7.4) (6.7.5) (6.7.6)
a=1 a=1 a=1
b=4 b=4 bh=4
n=28 n=388 n=388
AUG= ALG= AUG=
4526817541461 442885565131 468531639837
Done Done D
(6.7.7) (6.7.8) (6.7.9)
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Integral Calculus (Continued)

§8 — Graphing Integrals with Variable Upper Limit

One of the really nice features of the TI-86 is its ability to graph functions defined by integrals.

j

_C.T‘

As an example, let’s graph
F(x)= _[l'rsin(t2 Ydt

in the viewing window [-2, 4, 1] x [-1.5, 1, 0.2] with
xRes = 3. We first set the WINDOW values (see
(6.8.1)) and then enter F(x) as y1 in the (y(x)=)
editor.

The obvious way to enter F(x) is to enter
fnInt(sin(¢), ¢, 1, x)

for y1. However, entering
fnlnt(sin(x"), z, 1, x)

for y1 as we did in (6.8.2) is also permissible, i.e.,
the TI-86 can distinguish when x is used as a dummy
integration variable and when x is used as an upper
limit variable. This is convenient since it is much
easier to enter x using the key than it is to
enter ¢ by pressing [alpha] t.

In (6.8.3) we see the graph of F(x) in the indicated
viewing window when xRes = 3 and tol = 1x107".
Be patient. It takes about 2.5 minutes for the graph
to be completed. (With xRes = 1 and tol = 1x107° it

takes about 7 minutes with negligible improvement
in graph resolution.)

Now that we have the graph of F(x), we can use
(EVAL) to evaluate F(x) for specific values of x in
[-2, 4]. (To access (EVAL) press twice when
you are in the GRAPH menu.)

To find F(3), select (EVAL). then press [3] [ENTER].
See (6.8.4) and (6.8.5).

With the display as in (6.8.5) type in —1, and press
to evaluate F(-1). See (6.8.6).

(6.8.1)

(6.8.2)

(6.8.3)

(6.8.4)

(6.8.5)

(6.8.8)

WIHDOL
®*Min=-2
*Max=4
x5cl=1
JMin=-1.5
gMax=1
JaScl=,2
I5C= TWIND | 2000 T TRACE IGRAFRE

Floti Flotz Flots
sdlB.sin (x2)ax:1:x0

|quF| nhgr | deri l dere | Fnink k

e

NSNS

-

Euwal x=3
[FEvAC TetricPRcric T 1

i

LN

L

K3 W= MEZZOYEZELT

i

P

_—

=1 Y= BZO5ZEE0ZZ
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Integral Calculus (Continued)

%

For graphing F(x) in the viewing window TEE'%EHE'%E
[-2,4, 1] x [-1.5, 1, 0.2] with xRes = 3, it would i=.061
certainly have been sufficient to take tol = 0.01. If
you set tol to this value and regraph, you will find
that it takes the TI-86 about a minute to complete

the graph. (6.8.7) :
In (6.8.7), and (6.8.8) we see that for tol = 0.01, the 1
TI-86 computes F(3) = 0.46329423683, and that the i M
graphs of F(x) for tol = 1x10™ and tol = 0.01 are =y .
visually identical. /_ !
=3 vz ME320423683
(6.8.8)

d x
§9 - The E( |/ f®dt) = f(x) Result

In this section we obtain graphical verification that

([ ro)= s

for the special case f(x)= sin(;r:s), a = 1. We accomplish this by graphing both

yl= %Uj sin(t*) dt) and y2= sin(xﬁ)

in the same [-2, 4, 1] x [-2, 2, 1] viewing window.

L

If we set tol = 0.01 as in (6.8.7), set the viewing window WINDOW
; ®¥Min=-2
asin (6.9.1), enter y1 as ®Max=4
der1(fnl ), 1 Rt
t i X 'y 3 S ; H 1n= =
erl(fnInt(sin(a), 2, 1, x), x) \L"ga’F%
. ; 9Scl=
and attempt to g_raph yl, we (?btam the error FTE3E ICT BT AT (ST
message shown in (6.9.2). This message is to be (6.9.1)
expected. Recall that derl uses differentiation rules
to compute the derivatives for special functions for ERROR 17 INUALID
which the TI-86 knows the functional form of the
derivative. The TI-86 does not recognize
fnInt(sin(z), x, 1, x)
IGoTo 1 T T Tcurl

as one of these functions. However, the numerical (6.9.2)
derivative command nDer does not have this

limitation. Recall that the numerical derivative of f

at x is given by

f(x+6) - f(x-9)
20

where §is accessed by pressing [MEM] (TOL).
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Integral Calculus (Continued)

2. We will use the default value 0.001 for 6 as shown in \Uiténggtﬁ (?::i AR
(6.8.7). We enter WgZBsin (xEo
nDer(falnt(sin(z), 2, 1, x), x)
for 1 and sin(x") for 2 as shown in (6.9.3). Note that FI¥FE WINDG 200M TRACE GRAPH
we have selected Line style for 1 and Thick style (6.9.3)
for y2.
3. We then graph y1 and y2 with xRes = 3. Note on
your calculator how the graph of y1 is first graphed
in Line style and then %2 is graphed in Thick style !‘r\ ‘A n P&
covering up y1. After about 1.5 minutes we obtain V v
the display shown in (6.9.4). wizr= T FIND T 2000 TTRACE TGRAFA b
(6.9.4)
[t is instructive to use (EVAL) to demonstrate that
(6.9.4) contains both graphs and that the values of
y1 and y2 are slightly different at x = 2 (due to the ff\ /-\ ﬂ n
approximate nature of fnInt and nDer). Eusl '
yal x=
[CEVAC T=TPIC TRePICT T 1
(6.9.5)

4. With the display as in (6.9.4), press

i
(EVAL) 2] to obtain (6.9.5), and then press to
obtain (6.9.6), which indicates that /-\\ /-\ n ﬂ

1
y1 =-0.7568007265 at x = 2. / U v

=g vz PEERON7ZEE

(6.9.6)

5. Then press the up arrow key to obtain (6.9.7), which

z
indicates that 2 = —0.7568024953 at x = 2.
VaNPaW.¥!
VoV

=z »=- PEEBOZYEER

(6.9.7)

§10 — Limitations of Numerical Integration: Part 1

In this section and the next we investigate the limitations of the fnInt command. The general
principles employed by this command are common to graphing calculators and computer software
(such as Mathematica) that have built-in numeric integration commands. We have found that they all
have trouble dealing with the types of examples considered in Sections 10 and 11.

The general numeric integration algorithm approximates the integral of a function f{x) by
computing a weighted average of the function’s values at values & (sample points) in the integration
interval. The algorithm uses an iteration method, doubling the number of sample points in each
successive iteration and computing the weighted average for each iteration. When the algorithm
indicates that the last weighted average is within the stated tolerance (the tol setting on the TI-86),
the algorithm terminates, and the current weighted average is reported as the value of the integral.
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Integral Calculus (Continued)

The procedure whereby the algorithm determines the initial number of sample points and the test to
terminate the algorithm varies from one machine to the next.

All of the numeric integration algorithms appear to make similar assumptions about the
smoothness and other properties of the integrand. For a sufficiently pathological integrand, these
assumptions may be wrong and the algorithm may return an absurd answer or an answer that is
reasonable but not within the stated tolerance.

: i Floti Flotz Flot:

1. For our first pathological example, consider the w; E...n; (e"ﬁ'xz 5 By )
function

G(x) = J" e dt
which is an increasing function on [0, «). Enter G(x) i I*'”'"FI 1 T I derd I dere I Enint ¥
as y1 in the (y(x)=) graph editor as shown in (B:10:1)
(6.10.1).

: . = -5 1¢1@a>

2. Then with tol = 1 x10™, compute G(10), G(lOQ), g 886276925451
G(188), G(189), G(190), and G(200) as shown in 9l(18a> ———

BEE226925445
(6.10.2)

3. The reported values for G(10), G(100), and G(188) 9101890 .
are correct to the specified tolerance, but the gl 195?369948494EE &
reported values for G(189), G(190), and G(200) are { (2@)?' 574830543 -6
clearly wrong. What has happened? Well, the = - 1. 74856177946 -6
integrand g(x) = e approaches 0 very quickly as
we allow x to increase from 0 along the positive (6.10.3)
x-axis; i.e., g(x) is close to zero for almost all x in
the intervals [0, 189], [0, 190], and [0, 200]. In the
cases (7(189), G(190), and G(200), the fnlnt
algorithm was fooled into not taking enough sample
points near & = 0 to detect that G(x) for x = 189, 190,

200 was significantly greater than 0.

4. In(6.10.4) we give the calculator’s version of the
graph of G in the viewing window
[0, 400, 20] x [0, 1, 0.1] with xRes = 5 and
tol = 1x107. (The calculator needs about 1.5
minutes to do the graph.) This graph indicates that
the TI-86 will fail to correctly compute G(x) for (6.10.4)

x =189,
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Integral Calculus (Continued)

§11 - Limitations of Numerical Integration: Part 2

Our second pathological example is even more
enlightening. Consider the function

H(x)= [ h(t)dt,

where the integrand is the step function

2, 06<a<075
0, elsewhere

W(a) = {

In (6.11.1) we enter h(x) as y1 in the (y(x)=) graph
editor using the TEST menu as explained in
Sections 14-16 of Chapter 2. In (6.11.2) we show the
graph of k in the viewing window [0, 8, 1] x [0, 3, 1]
with xRes = 1.

For all x> 0.75, it is clear that H(x) = 1/2. Let’s see
what the TI-86 thinks the graph of H should look
like in the viewing window [0, 8, 1] x [0, 1, 0.2] with
xRes = 1 and tol = 1 x10~. We deselect y1 for
graphing purposes and enter y2 as shown in
(6.11.3). (With the chosen values for xRes and tol,
the TI-86 will need about 5 minutes to draw the
graph.)

In (6.11.4) we see the TI-86 rendition of the graph of
H in the specified viewing window. The graph in
(6.11.4) is rather shocking! The TI-86 reports that
the value of H(x) is zero for a large fraction of x in
[0.75, 8]. Even when it reports a value for H(x) close
to 1/2, this value is often not within the specified
tolerance level (look at the jagged nature of the

graph).

(6.11.1)

(6.11.2)

(6.11.3)

(6.11.4)

Floti Platz Flats
~g1B2(x=8. 52 (%208, 732

Floti Platz Plot:
g l=20x=0, 5) (x=0,. 75)
sZ2BfnInt gl <. B.x0

|tUlI'|F nbgr § derd | derz I Fnint b

A []

In (6.11.5)-(6.11.10) we give additional numerical evidence of the failure of the TI-86 to give the
correct value of 1/2 for H(x) when a = 0.75.

9201 92C1.52 9201,82
o 499997338936 . SBBEA9REE3I3
g2cl.10 Gz2C(1.62 gz2(2.42
P is] 5] B
u2C1.22 g2il.72 gZ2(2.62
. 6 5] L4875
(6.11.5) (6.11.6) (6.11.7)
gZ03) 924,50 204,90
(5] 49998806 7EEY L 4I7VES6E25
uZ2C3.52 924,60 92052
5] L oB3125 L OBEEE15168641
g2Cd ) uZ2id,. 82 JZCED
5] .G (5]
(6.11.8) (6.11.9) (6.11.10)
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Integral Calculus (Continued)

When the TI-86 reported a value of 0 for H(x) when x = 0.75, it is evident that the fnInt algorithm
did not sample any points x in the interval [0.5, 0.75] and, thus, thought that the integrand was zero
throughout the interval of integration. When the TI-86 reported a value for H(x) close to 1/2 but not
within the stated tolerance (such as reporting H(4.8) = 0.6), evidently the bisection process (due to
the step discontinuities at & = 0.5 and & = 0.75), did not produce a large enough difference for
successive weighted averages in order for the algorithm to work as hoped.

The two pathological examples presented in the last two sections should not shake your faith in
the fnInt command. For continuous integrands with no sharp-looking spikes, when you graph the
integrand over the interval of integration, the fnInt command gives results that are correct to within
the stated tolerance.

Exercises

1. Consider j{: sin(a* )da. Compute LS(100), RS(100), TRAP(100), MID(100), and SIMP(100) for this
integral.

2. Let[Ibegivenby I = L:i2""(i’r.
(a) Find the exact value of I.

(b) Approximate / using fnInt with tol = 1x 107,

(¢) Use sum seq to compute RS(50) for I.

50 - 1o
(d) The value of RS(50) is also given by (1 ;’25)2 2 1) Write down the appropriate sum seq
K=1

command with variable K and increment value 1 to compute RS(50) using this form. Some
people prefer this method of using sum seq to compute Riemann sums since integer
increments avoid the need to adjust for premature truncation.

3. Use fnInt to compare the area under one hump of the graph of f(x) = 2sin(2x) with the area
under one hump of the graph of f (;r) = sinx. Explain mathematically why the areas compare as
they do.

1
xE

4. It is usually shown in elementary calculus that the improper integral Lx dx converges to 1.

(a) Give numerical evidence in support of this fact.

(b) Compute fnlnt(l/ L 10“) to see that one must be careful in interpreting the TI-86’s
response for problems of this type.

5. Consider f(x)=a""" —0.8, 0<x <1. Have the TI-86 sketch a graph of a function F(x) with the
property that F’(x) = f(«) and F(0) = 0.2.

6. Isthe graph of f(x)= sin[jv'r.a +1 dt} increasing or decreasing at x = 1.77
(1]
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