Transformers

ID: 8776
In this activity, you will explore:

- Reflecting and rotating polygons
- Multiplying matrices to transform polygons
- Applying multiple transformations to a polygon

Name \qquad Class \qquad

To start, open the program TRANSFOR found in the Programs menu.

Problem 1 - Symmetry group for a square

Identity

Sketch	Description	Inverse
	no change	
		no change

Reflections

Sketch	Description	Inverse
	reflect over $x=0$	reflect over $x=0$
	reflect over $y=_$	reflect over $y=$reflect over $y=$

Rotations

Sketch	Description	Inverse
	rotate around origin____	
	rotate around origin____	
	rotate around origin___	

- How many different transformations are in the symmetry group of a square? Include the identity.
- What do you notice about the inverse transformations? Describe them.

Problem 2 - Transformer matrices

original square S

S

$$
\left[\begin{array}{ll}
a & b \\
c & d \\
e & f \\
g & h
\end{array}\right]
$$

\times

$$
T_{1}
$$

$$
\times\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=
$$

image square S^{\prime}

S^{\prime}

$$
\left[\begin{array}{ll}
-a & b \\
-c & d \\
-e & f \\
-g & h
\end{array}\right]
$$

- Find $\mathbf{S}^{\star} \boldsymbol{T} \mathbf{2}$. ($\boldsymbol{T} \mathbf{2}$ is given below).
- What transformations could T2 correspond to?

Complete the table.
$\left.\begin{array}{|c|c|c|}\hline \text { Transformer Matrix } & \text { Sketch } & \text { Description } \\ \hline T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] & & \text { no change } \\ \hline T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] & & \\ \hline T_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] & & \text { reflect over } x=0 \\ \hline T_{3}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] & & \\ \hline T_{4}=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] \\ T_{5}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \\ T_{6}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] & & \\ \hline-1 & 0\end{array}\right] \quad\left[\begin{array}{cc}0 & \\ \hline\end{array}\right.$

II-nspire

Use the description columns to match the transformer matrices with their inverses. For example, T_{1} is its own inverse.

Transformer Matrix	Inverse	Transformer Matrix	Inverse
$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$		$T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$	$T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
$T_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$		$T_{3}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$	
$T_{4}=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$	$T_{5}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$		
$T_{6}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$	$T_{7}=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$		

- Multiply each transformer matrix in the table above by its inverse. What do you notice?

Use matrix multiplication to answer each question.

- What is the effect of applying T_{3} followed by T_{5} ?
- What is the effect of applying T_{2} followed by T_{3} ?

II-nspire

Problem 3 - Symmetry group for an equilateral triangle
Use these transformer matrices.
$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad T_{2}=\left[\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right] \quad T_{3}=\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]$

Sketch	Description	Inverse	Transformer Matrix
			$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

