EP 077 - 2009 : Suites, approximation d'un réel

Auteur du corrigé : Alain SOLEAN TI-Nspire™ – TI-Nspire™ CAS

Avertissement : ce document a été réalisé avec la version 1.7

Fichier associé: EP077_2009_Suites.tns

1. Le sujet

Sujet 077 de l'épreuve pratique 2009 – Suites, approximation d'un réel

Enoncé

On considère les suites (a_n) et (b_n) définies par $a_0 = 9$ et, pour tout entier $n \ge 0$:

$$b_n = \frac{25}{{a_n}^2}$$
 et $a_{n+1} = \frac{2a_n + b_n}{3}$

On se propose d'étudier la monotonie et la limite de chacune de ces deux suites.

Partie A

- 1. Sur un tableur, créer trois colonnes donnant les valeurs de n, de a_n et de b_n , pour n entier variant de 0 à 20.
- 2. En observant les résultats obtenus sur le tableur, conjecturer, pour chacune des suites (a_n) et (b_n) , la monotonie et une valeur approchée de la limite à 10^{-6} près.
- **3.** On considère la suite (c_n) définie, pour tout entier n > 0, par $c_n = a_n^3$. Créer une nouvelle colonne du tableur pour calculer les termes c_n , pour n variant de 0 à 20. Émettre alors une conjecture sur la valeur exacte de la limite de la suite (a_n) .
- **4.** Conjecturer de même la valeur exacte de la limite de la suite (b_n) .

Partie B

- **5.** On admet que, pour tout entier $n \ge 0$, $b_n^3 \le 25 \le a_n^3$ Après avoir vérifié que, pour tout entier $n \ge 0$, on a $a_{n+1} - a_n = \frac{b_n - a_n}{3}$, démontrer les résultats conjecturés à la question **2.** sur la monotonie des suites (a_n) et (b_n) .
- **6.** Citer les théorèmes qui permettent de conclure que les suites (a_n) et (b_n) sont convergentes.
- 7. On désigne par ℓ et ℓ' les limites respectives des suites (a_n) et (b_n) . En utilisant les relations qui définissent ces deux suites, démontrer les résultats conjecturés aux questions 3. et 4. sur les valeurs exactes des réels ℓ et ℓ' .

Production demandée

- Obtention à l'écran des termes a_n , b_n et c_n , pour n entier variant de 0 à 20.
- Conjecture sur les valeurs exactes des limites des suites (a_n) et (b_n) .
- Démarches et réponses argumentées aux questions 5. et 7.

Compétences évaluées

- Utiliser un tableur pour étudier des suites définies par récurrence.
- Émettre et tester des conjectures.
- Étudier les variations d'une suite.
- Déterminer la limite d'une suite.

2. Corrigé

Partie A

1) Ouvrir une page Tableurs & listes.

Dans la cellule grisée de la colonne A, écrire la formule = seq(t,t,0,20) qui permet d'établir la colonne donnant les valeurs de n. Puis nommer la colonne n.

Dans la cellule **B1** inscrire 9 (correspondant à a_0). Dans la cellule **C1** écrire la formule = **25/B1^2** (donnant b_0).

Écrire dans la cellule B2 la formule = (2B1 + C1)/3 et dans la cellule C2 inscrire = $25/B2^2$.

Copier ces deux cellules et les « recopier » jusqu'à la ligne 21.

Nommer les colonnes B et C respectivement an et bn.

2) D'après les résultats obtenus sur le tableur, on peut conjecturer que la suite (a_n) est décroissante et convergente, et que la suite (b_n) est croissante et convergente. On peut aussi conjecturer que les deux suites ont des limites égales.

La limite commune vaut environ 2,924017 à 10⁻⁶ près.

	1.1	RAD APPROCH RÉEL 📋					
	A _n	B an	□ _{bn}		<u>~</u>		
*	=seq(t,t,0,2				ı		
1	0.	9.	0.308641		H		
2	1.	6 . 102880	0.671228				
3	2.	4 . 292329	1.356918				
4	3.	3.313859	2.276521				
5	4.	2 . 968080	2.837845				
Z					Ţ		

	1.1 RAD APPROCH RÉEL 📋						
	∥n ¯		B an	□ _{bn}	D	P	
+	seq	(t,t,0,2					
17		16.	2.924017	2.924017			
18		17.	2.924017	2.924017			
19		18.	2 . 924017	2 . 924017			
20		19.	2 . 924017	2.924017			
21		20.	2 . 924017	2 . 924017		L▼	
L	21						

3) Dans la cellule D1 écrire la formule = $B1^3$. Copier cette formule et la copier jusqu'à la cellule D21. Nommer **cn** la colonne D.

On peut donc conjecturer que la limite de la suite (a_n) est $\sqrt[3]{25}$.

4) De même la limite de la suite (b_n) est $\sqrt[3]{25}$.

	1.1	R/	RAD APPROCH RÉEL		
	An	B an	o _{bn}	□ _{cn}	<u>^</u>
+	=seq(t,t,0,	2			
19	18	. 2.924017	2.924017		25.
20	19	. 2.924017	2 . 924017		25.
21	20	. 2.924017	2.924017		25.
22					
23					∨
A	22				

Partie B

5) Pour tout
$$n \ge 0$$
, on a : $a_{n+1} - a_n = \frac{2a_n + b_n}{3} - a_n = \frac{b_n - a_n}{3}$

donc on a aussi :
$$a_{n+1} - a_n = \frac{\frac{25}{a_n^2} - a_n}{3} = \frac{25 - a_n^3}{3 a_n^2} \le 0.$$

On peut en conclure (d'après la propriété admise) que la suite (a_n) est décroissante.

Pour tout $n \ge 0$, on a aussi : $b_{n+1} - b_n = \frac{25}{a_{n+1}^2} - \frac{25}{a_n^2} = \frac{25(a_n + a_{n+1})(a_n - a_{n+1})}{a_{n+1}^2 a_n^2} \ge 0$, donc la suite (b_n) est croissante.

- **6)** La suite (a_n) est donc décroissante et minorée par 0, et la suite (b_n) est croissante et majorée par $\sqrt[3]{25}$ (d'après la propriété admise), donc elles sont convergentes.
- 7) Soit ℓ la limite de la suite (a_n) et ℓ ' celle de la suite (b_n) . On doit avoir :

$$\ell = \frac{2\ell + \ell'}{3}$$
 donc $\ell = \ell'$.

Comme, de plus, $\ell' = \frac{25}{\ell^2}$, on a bien $\ell^3 = 25$ donc $\ell = \ell' = \sqrt[3]{25}$.

Les conjectures des questions 3) et 4) sont bien vérifiées.