In your (n) screen, open My Documents, and open the Examples folder. The file is called " ".

On page (tab) 1.2, you will see four formulas that will be used in this exercise. Rewrite the formulas here as you know them:

Given two ordered pairs $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Midpoint $=$

Slope =

Distance =

Use the "claw" to grab one endpoint of the line segment. Drag it so that the segment forms a horizontal line segment. Record the ordered pairs here:
( $\qquad$ , $\qquad$ ) and $\qquad$ , $\qquad$
Now, record the midpoint: $\qquad$ , $\qquad$ )

## Slope:

## Distance:

Why is the distance a positive integer?
Use the "claw" to make the line segment be vertical. Record the ordered pairs here:
( $\qquad$ ) and $\qquad$ , $\qquad$
Now, record the midpoint:

Slope:

## Distance:

Why is the slope "undefined"?

Use the claw to make the line segment have a positive slope. Record the ordered pairs here:
(__, __ ) and (_, _ )

What is the fraction for the decimal that the calculator produced? (hint: figure out the slope yourself!)

Use the claw to make the line segment have a negative slope. . Record the ordered pairs here:
$\qquad$
$\qquad$ ) and $\qquad$ , $\qquad$ )

What is the fraction for the decimal that the calculator produced? (hint: figure out the slope yourself!)

This time, drag the endpoints so that they are at $(-2,-2)$ and $(6,2)$. What is the distance that is reported to you by the calculator?

Figure it out yourself, by hand. Leave your answer as a radical.

Drag the two endpoints to a location that has the origin, $(0,0)$ as its midpoint. Record the endpoints here: ( $\qquad$ , __ ) ) and ( $\quad, \quad$ ) What do you notice about the two endpoints?

Drag to a different location and test your theory. $\qquad$ , $\qquad$ ) and $\qquad$ , $\qquad$ ) Were you correct?

