Open the TI-Nspire document Derivative_Function.tns.
If a function $\mathbf{f}$ is differentiable at $x=a$, then its graph will appear to become linear as you zoom in on the point ( $a, \mathbf{f}(a)$ ).
The derivative $\mathbf{f}^{\prime}(a)$ is the slope of the tangent line to the graph of $y=\mathbf{f}(x)$ at the point ( $a, \mathbf{f}(a)$ ).

In this activity, you will define a new function, $\mathbf{f}^{\prime}(x)$, for the

| 1.1 | 1.2 | 2.1 |
| :--- | :--- | :--- | :--- | :--- |
| *Derivativ...rev | RAD $\square \times$ |  |

CALCULUS

Derivative Function
Use the left/right arrows to move the point by changing the $x$-coordinate. derivative at every value of $x$.

## Move to page 1.2.

1. The graph shown on the left is $y=\mathbf{f}(x)=x^{2}$ with one point ( $a, \mathbf{f}(a)$ ) boxed in. A magnified "zoomed-in" view of the box is shown on the right with the slope $f^{\prime}(a)$ of the tangent line to the graph at that point. In fact, the graph becomes indistinguishable from the tangent line when you zoom in close. Increase or decrease the value of a by using the up/down arrows.
a. What is $\mathbf{f}^{\prime}(2)$ ?
b. At what value(s) of $a$ is the derivative $f^{\prime}(a)=-2$ ?
c. Fill out the following table of values for $a$ and $\mathbf{f}^{\prime}(a)$.

| $\boldsymbol{a}=$ | -2 | -1.3 | -0.5 | 0 | 0.7 | 1.5 | 2.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{f}^{\prime}(\mathbf{a})=$ |  |  |  |  |  |  |  |

## Move to page 2.1.

2. Grab the white point labeled $x$ on the $x$-axis and move it to see the slope of the tangent line change as you move along the graph of $y=\mathbf{f}(x)=x^{2}$.
a. Describe any pattern you see in the slopes of the tangent lines.
b. Describe the relationship between each value of $x$ and the slope of the tangent line at $(x, \mathbf{f}(x))$.

## Move to page 3.1.

3. If you plot the value of the derivative $\mathbf{f}^{\prime}(x)$ as the $y$-coordinate for each value $x$, the ordered pairs $\left(x, \mathbf{f}^{\prime}(x)\right)$ trace out the graph of a new function $y=\mathbf{f}^{\prime}(x)$, the derivative function. Use the up arrow for $x$ in the top window to see the graph of the derivative traced out.
a. What can you say about the graph of $y=\mathbf{f}(x)=x^{2}$ when $\mathbf{f}^{\prime}(x)<0$ ?
b. What can you say about the graph of $y=\mathbf{f}(x)=x^{2}$ when $\mathbf{f}^{\prime}(x)>0$ ?
c. What can you say about the graph of $y=\mathbf{f}(x)=x^{2}$ when $\mathbf{f}^{\prime}(x)=0$ ?
d. What is the equation of the graph of $\mathbf{f}^{\prime}(x)$ ? What is a general rule that gives a relationship between $x$ and $\mathbf{f}^{\prime}(x)$ ? Explain.

## Move to page 4.1.

4. The graph shown in the left window is of $y=\mathbf{f}(x)=\sin (x)$ with one point $(a, f(a))$ boxed in. Again, a magnified "zoomed-in" view of the box is shown on the right along with the slope $f^{\prime}(a)$ of the tangent line to the graph at that point. Increase/decrease the value of a using the up/down arrows.
a. What is $\mathbf{f}^{\prime}(0)$ ?
b. At what values of $a$ (in this window) is the derivative $f^{\prime}(a)=0$ ?
c. Fill out the following table of values for $a$ and $\mathbf{f}^{\prime}(a)$.

| $\boldsymbol{a}$ | $-\pi$ | $-\frac{\pi}{2}$ | $-\frac{\pi}{4}$ | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{f}^{\prime}(\boldsymbol{a})=$ |  |  |  |  |  |  |  |  |

## Move to page 5.1.

5. Grab the white point labeled $x$ on the $x$-axis and move it to see the slope of the tangent line change as you move along the graph of $y=\mathbf{f}(x)=\sin (x)$.
a. What can you say about the slope of the tangent line when the graph of $\mathbf{f}(x)=\sin (x)$ is decreasing?
b. What can you say about the slope of the tangent line when the graph of $\mathbf{f}(x)=\sin (x)$ is increasing?

## Move to page 6.1.

6. Use the up arrow for $x$ in the top window to plot the graph of the derivative function $f^{\prime}(x)$.
a. What can you say about the graph of $y=\mathbf{f}(x)=\sin (x)$ when $\mathbf{f}^{\prime}(x)<0$ ?
b. What can you say about the graph of $y=\mathbf{f}(x)=\sin (x)$ when $\mathbf{f}^{\prime}(x)>0$ ?
c. What can you say about the graph of $y=\mathbf{f}(x)=\sin (x)$ when $\mathbf{f}^{\prime}(x)=0$ ?
d. Does the graph $y=\mathbf{f}^{\prime}(x)$ look familiar? What is the equation of the graph of $\mathbf{f}^{\prime}(x)$ ? What is a general rule that gives a relationship between $x$ and $\mathbf{f}^{\prime}(x)$ ? Explain.

## Move to page 7.1.

7. Increase the value of $a$ using the up/down arrows.
a. What is $\mathbf{f}^{\prime}(0)$ ?
b. For how many values of $a$ (in this window) is the derivative $f^{\prime}(a)=0$ ?

## Move to page 8.1.

8. Grab the white point labeled $x$ on the $x$-axis and move it to see the slope of the tangent line change as you move along the graph of $y=\mathbf{f}(x)$.
a. For approximately what values of $a$ (in this window) is the slope of the graph negative?
b. For approximately what values of $a$ (in this window) is the slope of the graph positive?

## Move to page 9.1.

9. Use the up arrow for $x$ in the top window to plot the graph of the derivative function $f^{\prime}(x)$.
a. What can you say about the graph of $y=\mathbf{f}(x)$ when $\mathbf{f}^{\prime}(x)<0$ ?
b. What can you say about the graph of $y=\mathbf{f}(x)$ when $\mathbf{f}^{\prime}(x)>0$ ?
c. What can you say about the graph of $y=\mathbf{f}(x)$ when $\mathbf{f}^{\prime}(x)=0$ ?
