\qquad
Class \qquad
Problem 1 - Finding the Derivative of $x^{2}+y^{2}=36$
The relation, $x^{2}+y^{2}=36$, in its current form implicitly defines two functions, $f_{1}(x)=y$ and $f_{2}(x)=y$. Find these two functions by solving $x^{2}+y^{2}=36$ for y.

$$
f_{1}(x)=\quad f_{2}(x)=
$$

Substitute the above functions in the original relation and then simplify.

$$
x^{2}+\left(f_{1}(x)\right)^{2}=36 \quad x^{2}+\left(f_{2}(x)\right)^{2}=36
$$

This confirms that $f_{1}(x)$ and $f_{2}(x)$ explicitly defines the relation $x^{2}+y^{2}=36$.

Graph $f_{1}(x)$ and $f_{2}(x)$ on the same set of axis and then draw it in the space to the right. Imagine that you were asked to find the slope of the curve at $x=2$.

- Why might this question be potentially difficult to answer?

- What strategies or methods could you use to answer this question?

One way to find the slope of a tangent drawn to the circle at any point (x, y) located on the curve is by taking the derivative of $f_{1}(x)$ and $f_{2}(x)$.

$$
\frac{d y}{d x} f_{1}(x)=\quad \frac{d y}{d x} f_{2}(x)=
$$

Check that your derivatives are correct by using the Derivative command (press F3:Calc >1:d(diffferentiate) on the Calculator screen.

Substitute 2 for x to determine the slope of the tangents to $x^{2}+y^{2}=36$ at $x=2$.

$$
\frac{d y}{d x} f_{1}(2)=\quad \frac{d y}{d x} f_{2}(2)=
$$

Another way to find the slope of a tangent is by finding the derivative of $x^{2}+y^{2}=36$ using implicit differentiation. On the Calculator screen press F3:Calc > D:impDif(to access the impDif command. Enter $\operatorname{impDif}\left(x^{2}+y^{2}=36, x, y\right)$ to find the derivative.

$$
\frac{d y}{d x}=
$$

Use this result to find the slope of the tangents to $x^{2}+y^{2}=36$ at $x=2$. First you will need to find the y-values when $x=2$.

$$
\frac{d y}{d x}(2, y)=\quad \frac{d y}{d x}(2, y)=
$$

- Is your answer consistent with what was found earlier?
- Rewrite the implicit differentiation derivative in terms of x. Show that, for all values of x and y, the derivatives of $f_{1}(x)$ and $f_{2}(x)$ that you found earlier are equal to the result found using the impDif command.

Problem 2 - Finding the Derivative of $x^{2}+y^{2}=36$ By Hand

To find the derivative of a relation $F(x, y)$, take the derivative of y with respect to x of each side of the relation. Looking at the original example, $x^{2}+y^{2}=36$, we get:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(36) \\
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right) & =\frac{d}{d x}(36)
\end{aligned}
$$

Evaluate the following and by hand.

$$
\frac{d}{d x}\left(x^{2}\right)=\quad \frac{d}{d x}(36)=
$$

, Implicit Differentiation

Use the Derivative command to find $\frac{d}{d x}\left(y^{2}\right)$. Set up the expression up as $\frac{d}{d x}\left(y(x)^{2}\right)$. Notice that $y(x)$ is used rather than just y. This is very important because it reminds the calculator that y is a function of x.

$$
\frac{d}{d x}\left(y^{2}\right)=
$$

You have now evaluated $\frac{d}{d x}\left(x^{2}\right), \frac{d}{d x}\left(y^{2}\right)$, and $\frac{d}{d x}(36)$. Replace these expressions in the equation $\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(36)$ and solve for $\frac{d y}{d x}$.

Compare your result to the one obtained using the impDif command.

Problem 3 - Finding the Derivative of $y^{2}+x y=2$

The relation, $y^{2}+x y=2$, can also be solved as two functions, $f_{1}(x)$ and $f_{2}(x)$, which explicitly define it.

- What strategy can be used to solve $y^{2}+x y=2$ for y ?

Solve $y^{2}+x y=2$ for y and use the Solve command (press F2:Algebra > 1:solve() to check your answer.

The derivative of $y^{2}+x y=2$ can then be found by taking the derivatives of $f_{1}(x)$ and $f_{2}(x)$. However, the derivative can be found more easily using implicit differentiation.
Use implicit differentiation to find the derivative of $y^{2}+x y=2$. Check your result by using the impDif command. (Hint: The product rule must be used to find the derivative of $x y$.)

$$
\frac{d y}{d x}=
$$

Use the derivative you found for $y^{2}+x y=2$ to calculate the slope at $x=-6$. First you will need to find the y-values when $x=-6$.

$$
\frac{d y}{d x}(-6, y)=\quad \frac{d y}{d x}(-6, y)=
$$

Verify your result graphically. Graph the two functions, $f_{1}(x)$ and $f_{2}(x)$. Then use the slopes and points to graph each tangent line.

Extension - Finding the Derivative of $x^{3}+y^{3}=6 x y$

The relation $x^{3}+y^{3}=6 x y$ cannot be solved explicitly for y. In this case implicit differentiation must be used.

- Find the derivative of $x^{3}+y^{3}=6 x y$ and use the impDif command to verify your result.

$$
\frac{d y}{d x}=
$$

Use this result to find the slope of the tangents to $x^{3}+y^{3}=6 x y$ at $x=1$. (Hint: Use the solve command to find the y values that correspond to $x=1$.)

