

Name	
Class	

Problem 1 – Finding the Derivative of $x^2 + y^2 = 36$

The relation, $x^2 + y^2 = 36$, in its current form *implicitly* defines two functions, $f_1(x) = y$ and $f_2(x) = y$. Find these two functions by solving $x^2 + y^2 = 36$ for *y*.

$$f_1(x) = f_2(x) =$$

Substitute the above functions in the original relation and then simplify.

$$x^{2} + (f_{1}(x))^{2} = 36$$
 $x^{2} + (f_{2}(x))^{2} = 36$

This confirms that $f_1(x)$ and $f_2(x)$ explicitly defines the relation $x^2 + y^2 = 36$.

Graph $f_1(x)$ and $f_2(x)$ on the same set of axis and then draw it in the space to the right. Imagine that you were asked to find the slope of the curve at x = 2.

• Why might this question be potentially difficult to answer?

F1+ F2+ Tools Zoom Tr	F3 F4 raceRe9rc	IPhMath	F6+ F DrawP	7+53) en :
<u></u>				<u> </u>
MAIN	L Rad Auto	FU	NC	

• What strategies or methods could you use to answer this question?

One way to find the slope of a tangent drawn to the circle at any point (x, y) located on the curve is by taking the derivative of $f_1(x)$ and $f_2(x)$.

$$\frac{dy}{dx}f_1(x) = \frac{dy}{dx}f_2(x) =$$

Check that your derivatives are correct by using the **Derivative** command (press **F3:Calc >1:***d*(differentiate) on the *Calculator* screen.

Substitute 2 for x to determine the slope of the tangents to $x^2 + y^2 = 36$ at x = 2.

$$\frac{dy}{dx}f_1(2) = \frac{dy}{dx}f_2(2) =$$

Implicit Differentiation

Another way to find the slope of a tangent is by finding the derivative of $x^2 + y^2 = 36$ using *implicit differentiation*. On the *Calculator* screen press F3:Calc > D:impDif(to access the impDif command. Enter impDif(x² + y² = 36, x, y) to find the derivative.

$$\frac{dy}{dx} =$$

Use this result to find the slope of the tangents to $x^2 + y^2 = 36$ at x = 2. First you will need to find the *y*-values when x = 2.

$$\frac{dy}{dx}(2,y) = \frac{dy}{dx}(2,y) =$$

- Is your answer consistent with what was found earlier?
- Rewrite the implicit differentiation derivative in terms of *x*. Show that, for all values of *x* and *y*, the derivatives of *f*₁(*x*) and *f*₂(*x*) that you found earlier are equal to the result found using the **impDif** command.

Problem 2 – Finding the Derivative of $x^2 + y^2 = 36$ By Hand

To find the derivative of a relation F(x, y), take the derivative of y with respect to x of each side of the relation. Looking at the original example, $x^2 + y^2 = 36$, we get:

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(36)$$
$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(36)$$

Evaluate the following and by hand.

$$\frac{d}{dx}(x^2) = \frac{d}{dx}(36) =$$

Implicit Differentiation

Use the **Derivative** command to find $\frac{d}{dx}(y^2)$. Set up the expression up as $\frac{d}{dx}(y(x)^2)$. Notice that y(x) is used rather than just y. This is very important because it reminds the calculator that y is a function of x.

$$\frac{d}{dx}(y^2) =$$

You have now evaluated $\frac{d}{dx}(x^2)$, $\frac{d}{dx}(y^2)$, and $\frac{d}{dx}(36)$. Replace these expressions in the equation $\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(36)$ and solve for $\frac{dy}{dx}$.

Compare your result to the one obtained using the **impDif** command.

Problem 3 – Finding the Derivative of $y^2 + xy = 2$

The relation, $y^2 + xy = 2$, can also be solved as two functions, $f_1(x)$ and $f_2(x)$, which *explicitly* define it.

• What strategy can be used to solve $y^2 + xy = 2$ for y?

Solve $y^2 + xy = 2$ for y and use the **Solve** command (press **F2:Algebra > 1:solve(**) to check your answer.

The derivative of $y^2 + xy = 2$ can then be found by taking the derivatives of $f_1(x)$ and $f_2(x)$. However, the derivative can be found more easily using implicit differentiation.

Use implicit differentiation to find the derivative of $y^2 + xy = 2$. Check your result by using the **impDif** command. (*Hint*: The product rule must be used to find the derivative of *xy*.)

$$\frac{dy}{dx} =$$

Use the derivative you found for $y^2 + xy = 2$ to calculate the slope at x = -6. First you will need to find the *y*-values when x = -6.

$$\frac{dy}{dx}(-6, y) = \frac{dy}{dx}(-6, y) =$$

Verify your result graphically. Graph the two functions, $f_1(x)$ and $f_2(x)$. Then use the slopes and points to graph each tangent line.

Extension – Finding the Derivative of $x^3 + y^3 = 6xy$

The relation $x^3 + y^3 = 6xy$ cannot be solved explicitly for *y*. In this case implicit differentiation must be used.

• Find the derivative of $x^3 + y^3 = 6xy$ and use the **impDif** command to verify your result.

$$\frac{dy}{dx} =$$

Use this result to find the slope of the tangents to $x^3 + y^3 = 6xy$ at x = 1. (*Hint*: Use the **solve** command to find the *y* values that correspond to x = 1.)