Description	Instructor Notes	Slides/Handouts/Files
In this activity students will investigate Rolle's Theorem and investigate and prove the Mean Value Theorem	If desired, functions can be changed. Functions of the type $f(x) = a \begin{cases} sin \\ cos \end{cases} bx \pm c \begin{cases} sin \\ cos \end{cases} dx$ work best. Rolle's Theorem is investigated in Problem 1 as a warm-up for the Mean Value Theorem in Problem 2. Be sure to discuss precision needed when approximating zero slopes and equal slopes graphically. Because the calculator is pixilated, it may not provide exact value for the slope that is being examined. In addition to obtaining values by moving a point, it is possible to change the ordered pairs to move a precise location. Note: The questions on the .tns file are duplicated on the worksheet. However, students can submit their .tns file to give you a quick method to assess their performance. Some of the items on the worksheet require	MVT Worksheet Mean Value Theorem.tns
	students to illustrate their full understanding of the mathematics concepts	
Participant Discussion		
Worksheet question 1 follow-up It is possible to find a function of Ex. $f(x) = 2 + \sqrt{ 3x - x }$	defined algebraically that is continuous on an interval, but not everywhere different	iable?
Worksheet question 12 is an ap Students can also use the MVT	pplication of the MVT. F to prove the 1 st derivative test for increasing or decreasing.	