

Problem 1 – Exploring the Euler Line

Start the *Cabri Jr.* application by pressing $\overline{\text{APPS}}$ and selecting **Cabri Jr**. Open the file *EULER* by pressing \overline{Y} , selecting **Open...**, and selecting the file. Acute triangle *ABC* is given. Construct the centroid, circumcenter, incenter, and orthocenter, and label them *C*, *R*, *I*, and *T*, respectively. Construct a line between points *T* and *R*. This line is called the Euler Line.

- 1. What do you notice about the orthocenter, *T*, the centroid, *C*, and the circumcenter, *R*?
- 2. Move point *B* and answer the following question. For what type of triangle does the incenter, *I*, lie on the Euler Line?
- 3. Move point *C* and answer the following question. What kind of triangle guarantees that the orthocenter, *T*, and the circumcenter, *R*, are on the sides of $\triangle ABC$?

Problem 2 – Exploring Ratios of the Euler Line

Open the Cabri Jr. file *EULERRAT*. You are given acute triangle *ABC*. The centroid, *C*, the circumcenter, *R*, and the orthocenter, *T*, are provided. Construct \overline{TR} , \overline{CR} , and \overline{CT} . Find *TR*,

CR, and *CT* (remember *TR* means the length of \overline{TR}). Finally, calculate $\frac{TR}{CR}$

- 4. What is the ratio of $\frac{TR}{CR}$?
- 5. How much longer is \overline{TR} than \overline{CR} ?
- 6. What is the ratio of CR to TR?
- 7. What is the ratio of CR to CT?