

Name _____ Class _____

CBR Set Up

- 1. Connect the CBR to the calculator using the link cable.
- 2. Turn on the calculator. Run the RANGER program:
 - a. Press 🗆.
 - b. Choose RANGER.
 - **c.** Press ⊆.
- 3. From the MAIN MENU select 2: SET DEFAULTS.
- **4.** With the selector arrow (\triangleright) at **START NOW**, press \subseteq .

Collecting the Data

- 1. Place the CBR on a table or desk so that the sensor is aimed at or above the walker's waist.
- 2. Measure 0.5 meter from the CBR and put a masking tape marker on the floor. Do the same at a distance of 4.5 meters.
- 3. Stand at the 0.5 mark and prepare to move away from the CBR at a slow and steady rate. When you are ready, press ⊆ and begin.
- If you are satisfied with your plot, sketch it below in the figure labeled Trial 1 and go to the next section. If not, press ⊆, select 3: REPEAT SAMPLE from the PLOT MENU, and try again.

Looking at the Results

Trial	Starting Distance	Type of Motion	<i>x</i> -coordinate (sec)	<i>y</i> -coordinate (m)	Slope (m/s)
1	0.5 m	Slow, steady away from CBR	$\begin{array}{l} x_1 = \\ x_2 = \end{array}$	<i>y</i> ₁ = <i>y</i> ₂ =	
2	0.5 m	Moderate, steady away from CBR	$\begin{array}{l} x_1 = \\ x_2 = \end{array}$	<i>y</i> ₁ = <i>y</i> ₂ =	
3	4.5 m	Slow, steady toward CBR	$\begin{array}{l} x_1 = \\ x_2 = \end{array}$	<i>y</i> ₁ = <i>y</i> ₂ =	
4	4.5 m	Moderate, steady toward CBR	$X_1 = X_2 =$	y ₁ = y ₂ =	

Organize the data from the four trials in the table below.

The slope or steepness of a line is defined as the amount of vertical change divided by the amount of horizontal change between two points on the line.

The equation is:

slope = $\frac{y_2 - y_1}{x_2 - x_1}$ where (x_1, y_1) and (x_2, y_2) represent two points.

1. Use ~ and | to move along the Distance-Time plot. Position the cursor at any point and record the *x*- and *y*-coordinates in the table beside x_1 and y_1 for Trial 1. Round the values to 2 decimal places.

Now position the cursor at a different point (not too close to the previous one) on the plot, and record these x- and y-values beside x_2 and y_2 in the table for Trial 1.

- **2.** Calculate the slope using the formula above. Record this computed value, expressed as a decimal to the nearest hundredth, in the table for Trial 1.
- To go to Trial 2, press ⊆ on your calculator and select 3: REPEAT SAMPLE from the PLOT MENU. This time, stand 0.5 meter from the CBR and move away at a moderate but steady rate.
- **4.** Sketch the plot for Trial 2, and then use ~ and | to move to two points on the line. Record the coordinates of these points and then compute and record the slope for Trial 2.
- **5.** Repeat the procedure described in question 3 for the remaining trials. Use the appropriate types of motion listed in the table.

- 6. For Trials 1 and 2, how do the sizes of the slopes compare? How do their signs (positive or negative) compare?
- 7. For Trials 3 and 4, how do the sizes of the slopes compare? How do their signs compare?
- 8. How do the slopes from Trials 1 and 2 differ from the slopes for Trials 3 and 4?
- 9. What effect does changing speed have on the Distance-Time plot?
- **10.** What effect does changing *direction* have on the plot?
- **11.** Complete the statements to summarize the relationships between motion and the characteristics of the slope value.
 - **a.** The faster the speed, the ______ the size of the slope.
 - **b.** Moving away from the CBR makes a plot with a ______ slope, and moving toward the CBR makes a plot with a ______ slope.

Going Further

- 1. Calculate the slope of a line given the 2 points (1.5, 2.08) and (6, 4.93).
- 2. Explain why the units of slope in this activity are meters per second (m/s).
- 3. Would the value of the slope change if the formula was changed to the following?

slope =
$$\frac{y_1 - y_2}{x_1 - x_2}$$

Explain why or why not.

- 4. Suppose motion data were collected for a person standing still 1 meter in front of the CBR. Predict what the Distance-Time plot would look like. Repeat the data collection for this situation. Was your prediction accurate? If not, describe the plot that was made. Calculate and record the slope.
- **5.** Sketch the plot of a walker starting 0.5 meter from the CBR and moving away quickly for a few seconds, stopping for a few seconds, then moving toward the CBR slowly. What is the sign of the slope for each section?