Name _____

Isotopes and Atomic Mass

Student Activity

\sim	-	_	_
	а	c	c
v	u	0	3

Open the TI-Nspire document Isotopes_Atomic_Mass.tns.

Most elements have two or more stable isotopes (26 elements have a single stable isotope). The atomic mass given in the Periodic Table is an average atomic mass based on the masses and natural abundances of the stable isotopes. A mass spectrometer can be used to determine the masses and abundances of the isotopes. This data is used to determine the average atomic mass of an element.

1.1 1.2 1.3 Isotopes_Atass √ 1.1				
Isotopes and Atomic Mass				
Science Nspired	³⁵ CI 17	³⁷ CI 17		

Move to pages 1.2 - 1.4. Answer the following questions here or in the .tns file.

Q1.	Most elements have	e two or more isotopes , like CI-35 a	and CI-37 All of the isotopes of		
	an element have the	e same number of (Mo	re than one response may be correct.)		
	A. protons	B. neutrons	C. electrons		
Q2.	Isotopes of an elem	Isotopes of an element have a different number of (More than one response may			
	correct.)				

A. protons

C. electrons

Q3. Isotopes of an element have the same mass.

A. True B. False

B. neutrons

Move to page 1.5.

1. Examine the schematic diagram of a mass spectrometer.

Move to page 1.6. Answer the following question here or in the .tns file.

- Q4. In the first stage of the mass spectrometer the atoms in the vaporized gas (chlorine in this case) _____.
 - A. are ionized to become B. pass through a magnetic +1 ions field
- C. enter into the detector

Move to pages 1.7 and 1.8.

 Read the instructions on page 1.7 for running the mass spectrometer simulation on page 1.8. After starting the simulation, you can use the up/down arrows to adjust the magnetic field. The counts per second (CPS) will provide data about the abundance of each isotope.

-i	Isoto	pes and Atomic Mass		Name
	Stude	ent Activity		Class
Move	to pages	s 1.9 – 1.21. Answer the following q	uestions below or i	n the .tns file.
Q5.	Based or A. CI-3	n the data from the mass spectromete 5	r, which Cl isotope h B. Cl-37	has the greatest abundance?
Q6.	To three	significant figures, the percent of CI-3	5 is%.	
Q7.	If chlorin figures) v Data:	e were 50% Cl-35 and 50% Cl-37, the would be amu. Cl-35 is 34.97 amu. Cl-37 is 36.97 amu. 1 amu = 1.66054 x 10 ⁻²⁷ kg	average atomic ma	ss of CI (to four significant
Q8.	The aver Data:	age atomic mass (four significant figu The abundance of CI-35 (34.97 amu The abundance of CI-37 (36.97 amu	res) for CI is) is 75.78%.) is 24.22%.	amu.
Q9.	10,000 c Data: A. 12,0 B. 12,0	arbon atoms have a mass of The abundance of C-12 (12.000 amu The abundance of C-13 (13.003 amu 00 10	amu. u) is 98.93%. u) is 1.07%. C. 13,000 D. 13,003	
Q10.	The aver A. 12.0	rage atomic mass of C is a 0 B. 12.01	amu. C	C. 13.00
Q11.	The aver Data:	age atomic mass (four significant figu The abundance of Mg-24 (23.985 an The abundance of Mg-25 (24.986 an The abundance of Mg-256 (25.983 a	res) for Mg is nu) is 78.99%. nu) is 10.00%. mu) is 11.01%.	amu.
Q12.	The perc Data:	entage of Ga-69 found in nature is Ga is 69.723 amu. Ga-69 is 68.926 amu. Ga-71 is 70.925 amu.	% (three s	ignificant figures).