Solving simultaneously, a = -1 and b = 13.2877... $y = -1 + 13.2877... \log x$ $y(3) = -1 + 13.2877... \log 3 = 5.3398...$

Interpolation, because 2 < 3 < 4

- 12. Two points on the graph are (0, 5) and (3, 10). Because point (3, 10) is the inflection point, then, by symmetry, another point on the graph is (3+(3-0),10+(10-5))=(6,15). Using a graphing calculator to do logistic regression on these three points (using $L_1=\{0,3,6\}$ and $L_2=\{5,10,15\}$), you get $y=\frac{20}{1+3e^{-0.3662...x}}$
- 13. Answers will vary.

Chapter 8 • Fitting Functions to Data

Exploration 8-1a

- 1. $\hat{y} = 1.4x + 3.8$
- 2. See table in Problem 5.
- 3. See table in Problem 5.
- 4. 0.4 1.8 + 3.0 2.2 + 0.6 = 0
- 5.

\hat{y}	$y - \hat{y}$	$(y-\hat{y})$
6.6	0.4	0.16
10.8	-1.8	3.24
15.0	3.0	9.00
19.2	-2.2	4.84
23.4	0.6	0.36

 $SS_{\rm res} = 17.65$

6.

\hat{y}	$y - \hat{y}$	$(y-\hat{y})^2$
6.7	0.3	0.09
10.9	-1.9	3.61
15.1	2.9	8.41
19.3	-2.3	5.29
23.5	0.5	0.25

 $SS_{\rm res} = 17.65$

The new equation doesn't fit the data as well.

7.

\hat{y}	$y - \hat{y}$	$(y - \hat{y})^2$
6.8	0.2	0.04
11.3	-2.3	5.29
15.8	2.2	4.84
20.3	-3.3	10.89
24.8	-0.8	0.25

 $SS_{res} = 21.70$

The two modified equations do not fit as well as the actual regression equation.

- 8. Answers will vary.
- 9. Answers will vary.

Exploration 8-2a

- 1. $\hat{y} = -2x + 46.4$ y decreases as x increases.
- 2.

It seems to fit fairly well.

3.

\hat{y}	$y - \hat{y}$	$(y - \hat{y})^2$
40.4	0.6	0.36
36.4	0.6	0.36
32.4	-3.4	11.56
28.4	-0.4	0.16
24.4	-1.4	1.96
20.4	5.6	31.36
16.4	2.6	6.76
12.4	-3.4	11.56
8.4	-0.4	0.16
4.4	-0.4	0.16

- 4. $SS_{res} = 64.40$
- 5.

\hat{y}	$y - \hat{y}$	$(y-\hat{y})^2$
40	1	1
36	1	1
32	-3	9
28	0	0
24	-1	1
20	6	36
16	3	9
12	-3	9
8	0	0
4	0	0

 $SS_{\rm res} = 66.00$

The modified equation doesn't fit the data as well.

6.
$$(\overline{x}, \overline{y}) = (12, 22.4)$$

 $\hat{y}(\overline{x}) = -2(12) + 46.4 = 22.4 = \overline{y}$

7.

No, it's impossible to tell which is better just by looking.