## Triangulation Problem

Using an A4 piece of paper with a 'landscape' orientation fold the top left corner of the page so that it just touches the bottom of the page as shown below.


| $x($ Length $\overline{G F})$ | Length $\overline{A F}$ | Area of Triangle. |
| :---: | :--- | :--- |
| 1 cm |  |  |
| 2 cms |  |  |
| 3 cms |  |  |
| 4 cms |  |  |
| 5 cms |  |  |
| 6 cms |  |  |
| 8 cms |  |  |
| 9 cms |  |  |
| 10 cms |  |  |



A triangle is formed and is labelled $\triangle \mathrm{AFG}$ in the diagram.
Measure the lengths $\overline{G F}$ and $\overline{A F}$, hence determine the area of your triangle.

1. Let $\overline{G F}$ be represented by $x$. Fold the paper using the method outlined above for the following values of $x$. Record your measurements for the length $\overline{A F}$ and the corresponding area for each of the triangles.
2. Which measurement of $x$ gave the maximum area of the triangle?
3. Draw a scatter-plot of $x$ against area on the axis provided below.
4. Use your graph to estimate the value of $x$ that will provide a maximum area for the triangle.
$\qquad$
5. Determine an expression for the hypotenuse of the triangle in terms of $x$. Refer to your paper folding for assistance.
$\qquad$
6. Determine an expression for the area of the triangle $\mathrm{A}(\mathrm{x})$.
$\qquad$
7. Find $A^{\prime}(x)$
8. Solve $A^{\prime}(x)=0$ and hence find the maximum possible area for the triangle.

## Generalising the solution.

9. Let $h$ be the height of the paper and $w$ the width. Determine an expression for $\mathrm{A}(\mathrm{x})$ in terms of $h, w$ and $x$. State any restrictions on $h$, wand $x$.
$\qquad$
$\qquad$
$\qquad$
10. Find $A^{\prime}(x)$
11. Calculate the maximum area of the triangle in terms of $h$, wand $x$ and the corresponding value of $x$ for which the maximum occurs.
$\qquad$
$\qquad$
$\qquad$
