Logarithms

ACMNA267 - Real Numbers

Name:

Score:

\qquad

Assessment

Student

Teacher: \qquad
Q.1. If $a>0$ and $b>0$ then $\log (a \cdot b)$ is equal to:
a) $a \cdot b$
b) $a+b$
c) $\quad \log (a) \cdot \log (b)$
d) $\quad \log (a)+\log (b)$
e) None of these
Q.2. If $a>0$ then $\log \left(a^{n}\right)$ is equal to:
a) $n \cdot \log (a)$
b) $n+\log (a)$
c) $\quad a \cdot \log (n)$
d) $\log (a)+\log (n)$
e) None of these
Q.3. If $a>0$ and $b>0$ then $\log \left(\frac{a}{b}\right)$ is equal to:
a) $\log (b)-\log (a)$
b) $\quad \log (a)-\log (b)$
c) $\quad \log (a) \cdot \log (b)$
d) $\frac{\log (a)}{\log (b)}$
e) None of these
Q.4. If $2^{x}=5$ then:
a) $\quad \log _{x}(2)=5$
b) $\quad \log _{2}(x)=5$
c) $x=2.5$
d) $x=2 \cdot \log _{10}(5)$
e) $x=\log _{2}(5)$
Q.5. Which one of the following statements is true?
a) $\log _{2} 2<\log _{8} 8$
b) $\log _{8} 2<\log _{2} 8$
c) $\log _{2} 2=0$
d) $\log _{2} 1=2$
e) $\quad \log _{2} 2=\log _{8} 8$
Q.6. $\log _{2} 16+\log _{2} 8$ is equal to:
a) 2
b) $\log _{2} 8$
c) $\quad \log _{2} 2$
d) 7
e) $\quad \log _{2} 24$
Q.7. $\quad \log _{10}\left(5^{x} \cdot 10^{3}\right)$ is equal to:
a) $\log _{10}\left(50^{3 x}\right)$
b) $3 x \log _{10}(50)$
d) $3+x \log _{10}(5)$
e) $\quad x \log _{10}\left(\frac{1}{2}\right)+3$
(C) Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.
Q.8. If $\log _{10}(y)=\log _{10}(x)+2$ then
a)

b) $\quad \log _{10}\left(\frac{y}{x}\right)=2$
c) $\quad \log _{10}\left(\frac{x}{y}\right)=2$
d) $\log _{10}(x+y)=2$
e) $\quad \log _{10}(x-y)=2$
Q.9.

If $\log _{4}\left(\frac{1}{a}\right)=-1$, then a equals:
a) 1
b)
c) $\quad-4$
d) $\frac{1}{4}$
e) $-\frac{1}{4}$
Q.10. If $\log _{a}(12)=1.079$ and $\log _{a}(3)=0.477$ then $\log _{a}(4)$ is equal to:
a) $\quad \log _{a}(1.079-0.477)$
b) $\frac{1.079}{0.477}$
c) $1.079-0.477$
d) $\quad \log _{a}\left(\frac{1.079}{0.477}\right)$
e) None of these

