Logarithms ACMNA267 – Real Numbers								
Nam	e:					1	5	
Score:					Assessment	1-IT	lavigator	Student 30 min
Теас	her:							
Q.1.	If $a > 0$ and $b > 0$ then $\log(a \cdot b)$ is equal to:							
	a) d)	$a \cdot b$ $\log(a) + \log(b)$	b e) () [a+b None of these		c)	$\log(a) \cdot \log(b)$
Q.2.	If <i>a</i> a)	> 0 then $\log(a^n)$ is $n \cdot \log(a)$	equal to:)	$n + \log(a)$		c)	$a \cdot \log(n)$
Q.3.	If $a > 0$ and $b > 0$ then $\log\left(\frac{a}{b}\right)$ is equal to:							
	a) d)	$\frac{\log(b) - \log(a)}{\log(b)}$	(b) b	[(1 ($\log(a) - \log(b)$ None of these		c)	$\log(a) \cdot \log(b)$
Q.4.	If 2 a) d)	x = 5 then: $\log_x(2) = 5$ $x = 2 \cdot \log_{10}(5)$	b)	$\log_2(x) = 5$ $x = \log_2(5)$		c)	<i>x</i> = 2.5
Q.5.	Whi a) d)	ich one of the follow $\log_2 2 < \log_8 8$ $\log_2 1 = 2$	ving stateme b ej	ents i)])	is true? $\log_8 2 < \log_2 8$ $\log_2 2 = \log_8 8$		c)	$\log_2 2 = 0$
Q.6.	log	$_{2}16 + \log_{2} 8$ is equal	to:					
	a)	2 b)	$\log_2 8$		c) $\log_2 2$	d) 7	7	e) $\log_2 24$
Q.7.	log ₁ a) d)	$\log_{10}(5^{x} \cdot 10^{3})$ is equal $\log_{10}(50^{3x})$ $3 + x \log_{10}(5)$	to: b)	$3x \log_{10}(50)$ $x \log_{10}\left(\frac{1}{2}\right) + 3$		c)	$3x + \log_{10}(50)$

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

Q.8. If
$$\log_{10}(y) = \log_{10}(x) + 2$$
 then
a) $\log_{10}(y) = 2$
b) $\log_{10}\left(\frac{y}{x}\right) = 2$
c) $\log_{10}\left(\frac{x}{y}\right) = 2$
d) $\log_{10}(x+y) = 2$
e) $\log_{10}(x-y) = 2$
Q.9. If $\log_{4}\left(\frac{1}{a}\right) = -1$, then *a* equals:
a) 1 b) 4 c) -4 d) $\frac{1}{4}$ e) $-\frac{1}{4}$
Q.10. If $\log_{a}(12) = 1.079$ and $\log_{a}(3) = 0.477$ then $\log_{a}(4)$ is equal to:

a)
$$\log_{a}(1.079 - 0.477)$$
 b) $\frac{1.079}{0.477}$ c) $1.079 - 0.477$
d) $\log_{a}\left(\frac{1.079}{0.477}\right)$ e) None of these

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

