

Name _____

Class __

Problem 1 – Adding Polynomials

In this problem, you will build the graph of (f+g)(x) from the graphs of f(x) and g(x). Run the **BLDCURVE** program and choose **1:AddPolys.**

Listen as your teacher explains what (f + g)(x) means. Look at the graphs of f(x) and g(x). Make hypotheses about what the graph of (f + g)(x) will look like.

In the graph of (f + g)(x), each *y*-value is found by adding f(x) and g(x).

Press ENTER. The program prompts you to enter a value for *x*. Enter **1**. The program draws a vertical line at x = 1 and displays the values of f(1) and g(1).

Use the left and right arrows to move the cursor along the vertical line x = 1 until the *y*-value (shown at the bottom of the screen) is equal to f(1) + g(1). The cursor is now on a point that is on the graph of (f + g)(x).

Press ENTER to mark this point.

Press ENTER again and the system will prompt you for another *x*-value.

Continue plotting points on the graph of (f + g)(x) until you have plotted at least 10 points. Plot the points to the nearest tenth.

Note: If you plot a point that is not on the graph or enter an *x*-value for which you cannot plot a point because the *y*-value is too large or too small, enter **100** as an *x*-value and the program will delete the last point you plotted.

When you have plotted 10 points, look at the shape of the graph and answer the following:

- When is the graph of (f + g)(x) above the graphs of f(x) and g(x)?
- When is it between the graphs of f(x) and g(x)? When is it below?

Then enter **86** to return to the menu and choose **Exit**.

View L1 and L2 in the List Editor and confirm that you captured 10 data points.

L1	L2	L3	1
This NTY	7 17.6 3.8 6 11.2 17 3	ოოოოოო	_
L100=1			
Cubic 3	Reg L	1, 2,	Y
Cubic 3	Reg L	1, 2,	5

Perform a cubic regression to find an equation through the points you plotted, storing the equation in **Y3**.

- Record the regression equation.
- The degree of f(x) is 3 and the degree of g(x) is 3. What is the degree of (f + g)(x)?

Press GRAPH to view the regression model.

 $f(x) = x^3 + 2x^2 - 5x$ $q(x) = 2x^3 + 4x^2 - 3x + 6.$

- Calculate (f + g)(x) algebraically.
- How does this result compare with the regression equation?

Problem 2 – Subtracting Polynomials

In this problem, you will use the same steps to build the curve (f - g)(x). Run **BLDCURVE** and select **2:SubPolys**. After you have plotted 10 points, answer the following:

- When is the graph of (f g)(x) above the graphs of f(x) and g(x)?
- When is it between the graphs of *f*(*x*) and *g*(*x*)?

- The degree of f(x) is 4, and the degree of g(x) is 4. What is the degree of (f g)(x)?
- Based on your answer, choose and perform a polynomial regression on the data in L1 and L2. Record the regression equation.

 $f(x) = x^4 + 3x^3 - 2x^2 + 6x + 1$ $g(x) = -x^4 + 3x^2 - 4x + 3$

- Calculate (f g)(x) algebraically.
- How does this result compare with the regression equation?

Problem 3 – Multiplying Polynomials

Run the program **BLDCURVE** and select **3:MultPolys**. Build the curve of (f * g)(x).

• The degree of f(x) is 2 and the degree of g(x) is 2. What is the degree of (f * g)(x)?

Use the appropriate statistical regression to find an equation for the curve you built.

 $f(x) = x^2 + 4$

$$g(x) = -2x^2 + 3x + 5$$

- Calculate (f * g)(x) algebraically.
- How does this result compare with the regression equation?

Problem 4 – Dividing Polynomials

Run the program **BLDCURVE** and select **4:DivPolys**. Build the curve of $(f \div g)(x)$.

• The degree of f(x) is 3 and the degree of g(x) is 1. What is the degree of $(f \div g)(x)$?

Use the appropriate statistical regression to find an equation for the curve you built.

 $f(x) = x^3 - x^2 + 3x + 5$

g(x) = x + 1

- Calculate $(f \div g)(x)$ algebraically.
- How does this result compare with the regression equation?