Building Curves
Name \qquad
\qquad

Problem 1 - Adding Polynomials

In this problem, you will build the graph of $(f+g)(x)$ from the graphs of $f(x)$ and $g(x)$. Run the BLDCURVE program and choose 1:AddPolys.

Listen as your teacher explains what $(f+g)(x)$ means. Look at the graphs of $f(x)$ and $g(x)$. Make hypotheses about what the graph of $(f+g)(x)$ will look like.

In the graph of $(f+g)(x)$, each y-value is found by adding $f(x)$ and $g(x)$.

Press ENTER. The program prompts you to enter a value for x. Enter 1. The program draws a vertical line at $x=1$ and displays the values of $f(1)$ and $g(1)$.

Use the left and right arrows to move the cursor along the vertical line $x=1$ until the y-value (shown at the bottom of the screen) is equal to $f(1)+g(1)$. The cursor is now on a point that is on the graph of $(f+g)(x)$.

Press ENTER to mark this point.
Press ENTER again and the system will prompt you for another x-value.

Continue plotting points on the graph of $(f+g)(x)$ until you have plotted at least 10 points. Plot the points to the nearest tenth.

Note: If you plot a point that is not on the graph or enter an x-value for which you cannot plot a point because the y-value is too large or too small, enter 100 as an x-value and the program will delete the last point you plotted.

When you have plotted 10 points, look at the shape of the graph and answer the following:

- When is the graph of $(f+g)(x)$ above the graphs of $f(x)$ and $g(x)$?
- When is it between the graphs of $f(x)$ and $g(x)$? When is it below?

Building Curves

Then enter 86 to return to the menu and choose Exit
View L1 and L2 in the List Editor and confirm that you captured 10 data points.

L1	L2	L2	1
F	7	-	
1.5	17.6	-3	
$\stackrel{7}{0}$	\%	-	
-5	11.2	-	
-1	$\frac{17}{3}$	-	

CubicReg Li,Lz,Y
Perform a cubic regression to find an equation through the points you plotted, storing the equation in Y_{3}.

- Record the regression equation.

- The degree of $f(x)$ is 3 and the degree of $g(x)$ is 3 . What is the degree of $(f+g)(x)$?

Press GRAPH to view the regression model.
$f(x)=x^{3}+2 x^{2}-5 x$
$g(x)=2 x^{3}+4 x^{2}-3 x+6$.

- Calculate $(f+g)(x)$ algebraically.
- How does this result compare with the regression equation?

Problem 2 - Subtracting Polynomials

In this problem, you will use the same steps to build the curve $(f-g)(x)$. Run BLDCURVE and select 2:SubPolys. After you have plotted 10 points, answer the following:

- When is the graph of $(f-g)(x)$ above the graphs of $f(x)$ and $g(x)$?
- When is it between the graphs of $f(x)$ and $g(x)$?
- The degree of $f(x)$ is 4 , and the degree of $g(x)$ is 4 . What is the degree of $(f-g)(x)$?
- Based on your answer, choose and perform a polynomial regression on the data in L1 and L2. Record the regression equation.

$$
\begin{aligned}
& f(x)=x^{4}+3 x^{3}-2 x^{2}+6 x+1 \\
& g(x)=-x^{4}+3 x^{2}-4 x+3
\end{aligned}
$$

- Calculate $(f-g)(x)$ algebraically.
- How does this result compare with the regression equation?

Problem 3 - Multiplying Polynomials

Run the program BLDCURVE and select 3:MultPolys. Build the curve of $(f * g)(x)$.

- The degree of $f(x)$ is 2 and the degree of $g(x)$ is 2 . What is the degree of $(f * g)(x)$?

Use the appropriate statistical regression to find an equation for the curve you built.
$f(x)=x^{2}+4$
$g(x)=-2 x^{2}+3 x+5$

- Calculate $\left(f^{*} g\right)(x)$ algebraically.
- How does this result compare with the regression equation?

Building Curves

Problem 4 - Dividing Polynomials

Run the program BLDCURVE and select 4:DivPolys. Build the curve of $(f \div g)(x)$.

- The degree of $f(x)$ is 3 and the degree of $g(x)$ is 1 . What is the degree of $(f \div g)(x)$?

Use the appropriate statistical regression to find an equation for the curve you built.
$f(x)=x^{3}-x^{2}+3 x+5$
$g(x)=x+1$

- Calculate $(f \div g)(x)$ algebraically.
- How does this result compare with the regression equation?

