Area of a Parallelogram

Teacher Notes \& Answers

$7 \quad 8 \quad 9$

Introduction

In this activity you will explore ways to determine the area of a parallelogram.

Teacher Notes:

This activity is best done before the area of a triangle activity.

Exploring

Open the TI-Nspire document: Parallelogram Area
Use the trackpad to grab and move vertex A.

41.1	*Parallelo..rea	deg $]^{\text {a }} \times$
< $>$	$100.5 \mathrm{~cm}^{2}$	$1 \stackrel{\rightharpoonup}{\mathrm{~cm}}$

Question: 1

Does moving vertex A change the area of the parallelogram?
Answer: No - The 'shape' change but the area does not.
Teacher Notes: Neither the base or height change whilst moving vertex A.

Question: 2

Grab vertex B. Does changing vertex B change the area of the parallelogram?
Answer: Yes. Vertex B changes the size of the base and the area.

Question: 3

Grab vertex D . Does changing vertex D change the area of the parallelogram?
Answer: Yes. Vertex D changes both the height and base of the parallelogram ... and therefore area.
Adjust the appropriate vertices so that the area of the parallelogram is approximately $100 \mathrm{~cm}^{2}$.

Place the mouse over the top of the area measurement and press:

> ctrl + menu to access the contextual menu.

Select Attributes from the drop-down menu, then arrow down to the padlock and across to lock it! The area of the parallelogram is now locked and will not change.

Question: 4
With the padlock 'locked', drag vertex D. Can the parallelogram still change shape?
Answer: Yes. D moves parallel to the base: AB.

Navigate to the slider (top right of screen) and click on the right-hand side of the slider.

With each click on the slider a slight change will happen to the diagram. For the first click a triangle appears!

Keep clicking on the slider until some measurements appear.
Note: You can go backwards by clicking the left side of the slider.

Question: 5

Complete the following statement: "The area of the parallelogram is equal to:"
Answer: "the area of a rectangle with the same height and base". (length by width)

Question: 6

Unlock the area of the parallelogram. Drag point D around with the slider on the last animation stage. Record four different parallelogram dimensions and the corresponding area.
Answer: Answers will vary. Students should see that the product: height x base = Area

Question: 7

Describe how the area of a parallelogram can be calculated.
Answer: The area of a parallelogram is given by: height x base = Area

Question: 8

If the parallelogram is cut in half along the diagonal: AC or BD , what shape will result?
Answer: The shape will be a triangle.
Teacher Notes: The purpose of this question is to provide a clue that cutting a parallelogram in 'half' produces two identical triangles (not proven, observation only). Therefore, the area of a triangle is half the area of a parallelogram. Given the area of a parallelogram is equal to base x height, then it follows the area of a triangle is $1 / 2 x$ base x height.

