Angles in Quadrilaterals

ACMMG202 - Measurement and Geometry (Answers)
Q.1. $\Varangle A B C$ and $\Varangle D E F$ are called:
a) alternate
b) corresponding
c) allied
d) co-interior
e) vertically opposite
Q.2. $\Varangle A B C$ and $\Varangle D E F$ are called:
a) alternate
b) corresponding
c) allied
d) congruent
e) vertically opposite

Q.3. If $\Varangle A B C=125^{\circ}$ then $\Varangle D E F$ is equal to:
a) 25°
b) 35°
c) 55°
d) 65°
e) 125°

Q.4. If $\Varangle A D R=80^{\circ}$ then $\Varangle D A E$ is equal to:
a) 120°
b) 100°
c) 80°
d) 20°
e) 10°
$R E \| D A$
$E A \| R D$

[^0]Q.5. Given the information provided opposite; $\Varangle C A D$ is equal to:
a) 140°
b) 130°
c) 120°
d) 65°
e) 50°
Q.6. $\triangle A B C$ is an isosceles triangle. $\Varangle B A C$ is equal to:
$$
\left(180^{\circ}-40^{\circ}\right) / 2=70^{\circ}
$$
Q.7. $\triangle A B C$ is isosceles and congruent with $\triangle B C D$ Given $A B=B D$, it follows $A B C D$ must be a:
a) square
b) rectangle
c) rhombus
d) Parallelogram
e) trapezium
Q.8. The angle sum: $a+b+c+d$ is equal to:
360°

\qquad
Q.9. $A B C D$ is a parallelogram and $A D=D E$, therefore $\Varangle D A E$ is equal to:

```
\Varangle C B A = 5 6 ~ [ A l l i e d ~ o r ~ C o - i n t e r i o r ~ a n g l e s ] ~
\VarangleCBA = \VarangleCDA [Parallelogram]
\VarangleDAE =(180-(20' +56}))/2=52 [Isosceles AD=DE]
```

Q.10. Determine the size of $\Varangle \mathrm{DAE}$:

```
\VarangleAEB = 70 [ [\VarangleAEB + \VarangleAED = 180}\mp@subsup{}{}{\circ}
\VarangleEBA = 180-2\times70}=4\mp@subsup{0}{}{\circ}[\triangleABE Isosceles
\ADB =40
\Varangle D A E = 1 8 0 - 4 0 ^ { \circ } - 1 1 0 ^ { \circ } = 3 0 ^ { \circ } [ \triangle A D E ]
```

$$
\triangle A B C+\triangle A C B=130^{\circ}
$$

$\triangle A B C \cong \triangle B C D$ $A B=B D$

$A B C D$ is a rhombus $\triangle D E A=110^{\circ}$
$A B=E B$

[^0]: (C) Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes

