Name \_\_\_\_ Class

# Open the TI-Nspire<sup>™</sup> document Discriminant\_Testing.tns.

Can you tell how many roots a quadratic function will have without solving an equation? This lesson investigates the relationship between the discriminant of a quadratic equation and the nature of the roots of the quadratic function. 1.1 1.2 2.1 ▶ Discrimina...rev DEG □ ×

Algebra 2

#### Discriminant Testing

Use the following pages to determine the relationship between the value of the discriminant and the nature of the roots of a quadratic function.

The discriminant comes from the quadratic root formula,  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ , where *a*, *b*, and *c* are the parameters of the quadratic equation  $ax^2 + bx + c = 0$ . The discriminant is  $b^2 - 4ac$ .

Move to page 1.2.

Press ctrl ▶ and ctrl ◀ to navigate through the lesson, or use the Touchpad and click 强.

How is the quadratic formula related to the graph of a quadratic function? What potential problems emerge in using the quadratic formula? The discriminant can help us with these issues.

- Use the slider (click the up or down arrow) to produce graphs of quadratic functions. Notice the number of times the graphs intersect the *x*-axis. Describe the nature of the roots for the set of quadratic functions you can generate on page 1.2.
- 2. a. Describe the value of the discriminant for all of the functions you can generate on page 1.2.
  - b. Explain how the value of the discriminant relates to your response to question 1.

## Move to page 2.1.

3. Use the slider to produce various graphs of quadratic functions. Notice the number of times the graphs intersect the *x*-axis. Describe the nature of the roots for the set of

| Name  |  |
|-------|--|
| Class |  |

quadratic functions you can generate on page 2.1.

- 4. a. Describe the value of the discriminant for all of the functions you can generate on page 2.1.
  - b. Explain how the value of the discriminant relates to your response to question 3.

## Move to page 3.1.

- 5. Use the slider to produce various graphs of quadratic functions. Notice the number of times the graphs intersect the *x*-axis. Describe the nature of the roots for the set of quadratic functions you can generate on page 3.1.
- 6. a. Describe the value of the discriminant for all of the functions you can generate on page 3.1.
  - b. Explain how the value of the discriminant relates to your response to question 5.

## Move to page 4.1.



| а | b | с | Discriminant | Nature of the Roots | Root(s) |
|---|---|---|--------------|---------------------|---------|
|   |   |   |              |                     |         |
|   |   |   |              |                     |         |
|   |   |   |              |                     |         |
|   |   |   |              |                     |         |
|   |   |   |              |                     |         |
|   |   |   |              |                     |         |

Use your completed chart to answer the following questions:

- a. Why are there three possibilities for the number of *x*-intercepts (zero, one, or two intercepts) for all graphs? How is that determined?
- b. When is the  $b^2$  part of the discriminant negative?
- c. What determines whether you have real roots versus non-real roots?
- d. How do the sizes of *a*, *b*, and *c* affect the discriminant?
- e. Will you ever have one real and one non-real root? Why or why not?
- f. If a and c are both negative, will there ever be two real roots? Why or why not?



| Name  |  |
|-------|--|
| Class |  |

- g. When will the roots be rational? Explain mathematically.
- h. When might the roots be integer values? Explain mathematically.