Liz	Nonlinear Systems of Equa NonlinearSysEqns.tns		lations ^{Name}
Y			Class
Problem 1 – Numbers of possible intersection points			
How many intersection points are possible for a:			
• lir	ne and circle	•	line and parabola
• lir	ne and hyperbola	•	line and ellipse
С	onjecture:		

How many intersection points are possible for a

- hyperbola and circle ______
 hyperbola and parabola ______
- Conjecture:

Problem 2 – Two parabolas

Sketch the graphs you made on your handheld, showing how two parabolas can intersect at 0, 1, 2, 3, and 4 points.

Problem 3 – Solving nonlinear systems by graphing

For each system, first write how many solutions are possible. Then solve each system by graphing. Sketch the graphs below and write the solutions, rounded to the nearest hundredth.

$$1. \quad \begin{cases} x^2 + y^2 = 25\\ 2x^2 + 6y^2 = 18 \end{cases}$$

$$\mathbf{2.}\quad \begin{cases} x+y=3\\ y^2-8x=0 \end{cases}$$

3.
$$\begin{cases} x^2 - y^2 = 4\\ y + x^2 = -8x - 19 \end{cases}$$

4.
$$\begin{cases} x^2 + y^2 = 15 \\ y + 6 = x^2 \end{cases}$$