What's My Absolute Value?

Name \qquad
Class

In this activity, you will:

- discover the rule for taking the absolute value of a variable inside a function.
- discover the rule for taking the absolute value of a function.

Open a new document (see directions below) on your handheld and work by yourself or with a partner to complete the activity. Use this document as a reference and to record your answers.

Press (떄) This takes you to the home screen.

Arrow to 5 New Document.
Press 浣

II-nspire

Type 〔〕 Add Graphs and Geometry.

Graph y = 3x-4.
Just type $3 x-4$ for the $\mathrm{f} 1(\mathrm{x})$ on your calculator screen. Press Sixir to see the graph.

Sketch the graph on your paper.

What kind of graph did you get?

Are you surprised?
No, this is to be expected.

We are going to add another graph page to our document.
(tatr) I; Add Graphs and Geometry.

Il-nspire

Graph $y=3 a b s(x)-4$.
Type just as it is written in $\mathrm{f} 2(\mathrm{x})$ on your calculator. Press 气init to see the graph.

Sketch the graph on your paper.

Absolute value graph with y -intercept of $(0,-4), x$-intercepts $(-4 / 3,0)$ and $(4 / 3,0)$.

No, we should expect an absolute value graph.

All negative x-values are changed to positive x-values before they are put into the function, so the positive x-values stay and the positive x-value points reflect over the y-axis. The negative x-values are gone.

tI-nspire

What kind of graph did you get?

Are you surprised?

How would you describe how you would graph this transformation?

Don't know? Just wait, it'll come to you!
This time we are going to add another problem to our document.

We get another absolute value graph, but this time, there are no negative y values.

No.

All positive y-values stay the same. All negative y-values reflect across the x axis.

II-nspire

Graph $y=x^{2}-3 x-4$
Just type $x^{2}-3 x-4$ for the $f 1(x)$ on your calculator screen. Press to see the graph.

Sketch the graph on your paper.

What kind of graph did you get?

Are you surprised? Why or why not?

We are going to add another graph page to our document.
. Graph $y=(\operatorname{abs}(x))^{2}-3 \operatorname{abs}(x)-4$.
Type just as it is written into f2(x) on your calculator. Press to see the graph.

Sketch the graph on your paper.

You get a parabola.

No, this graph is expected for a quadratic.

II-nspire

Describe the graph did you got?

Are you surprised?

How would you describe how you would graph this transformation?

If you don't see it, go back and look at problem 1.2. What do these 2 problems have in common? (Remember to go back to a previous page press (otrl).
We are going to add another graph page to our document.

Graph $\mathrm{y}=\operatorname{abs}\left(\mathrm{x}^{2}-3 \mathrm{x}-4\right)$.
Type just as it is written into $f 3(x)$ on your calculator. Press • to see the graph.

Sketch the graph on your paper.

What kind of graph did you get?

Are you surprised?

How would you describe how you would graph this transformation?

If you don't see it, go back and look at problem 1.3. What do these 2 problems have in common?

A "parabola" with 2 humps at bottom.

Shouldn't be if they understood the first part, but most will say yes.

Once again you ignore the negative x values and reflect the positive x-value points over the y-axis.

A parabola with the bottom part (that part below the x-axis) reflected across the x axis.

No. We work the function and then change all values to positive.

Take all negative y-values and make them positive.

Il-nspire
Now if I give you a graph (no equation) can you graph the absolute value of the variable and the absolute value of the function?

Explain how you would go about graphing each of these. How are the graphs the same? Both graphs have the same original points. We are using the absolute value on both graphs. How are they different? We are taking the absolute value of the " x " on the first graph and the absolute value of the " y " on the second graph.

Try graphing $\mathrm{f}(|\mathrm{x}|)$ and $|\mathrm{f}(\mathrm{x})|$ given the following $\mathrm{f}(\mathrm{x})$.

