Ages 17-19 - Optimisation

1. A standard example

As an introduction, do a)-h) without using CAS

The cylinder shown has the volume 1.0 litre $=1 \mathrm{dm}^{3}$.
We wish to determine the radius r and height h that gives the minimum surface area of the cylinder.
a) Write the volume $V=1 \mathrm{dm}^{3}$ of the cylinder in terms of h and r.
b) Solve the equation in (1) for h.
c) Write the surface area A of the cylinder (side+bottom+top) in terms of h and r.
d) Substituting h from (3), write A as a function of r.
e) Determine the derivative $A^{\prime}(r)$.
f) Solve the equation $A^{\prime}(r)=0$ for r.
g) Calculate the corresponding value of h by substituting the value of r just found into (3).

Note: The unit of h and r is dm .
h) Compare the numerical values of h and r. Conjecture? Prove the conjecture.

Solution (partial)

The numerical values found for the special case $V=1.0$ litre suggest the conjecture that the minimum area is obtained when height $=$ diameter. Of course it is possible to prove the conjecture algebraïcally using paper and pencil methods only. Below we show how to do it with CAS.

Exercise

Consider a similar problem for a cylinder without a top.
(i) Determine the dimensions giving the minimum surface area for a volume of 1.0 litre.
(ii) Compare height and radius for any volume V where the cylinder has a minimum surface area.

Answer to b: height = radius.

2. Make a cone

A section is cut from a circular piece of paper, and folded to make a cone. The radius of the paper is R. You now remove a fraction x of the paper. If for example $x=0.25$, the centre angle α of the section cut out for the cone is 90°. The base radius of the cone is given by r and the height by h.

On a Voyage 200 we can write rr for R, to distinguish between the base radius of the cone and the radius of the circular piece of paper from which the cone is made.
a) Determine r and h in terms of x and R and find the volume $V(x)$ of the cone in terms of x and R
b) Determine $V^{\prime}(x)$ and solve the equation $V^{\prime}(x)=0$.
c) Calculate the fraction x and the corresponding angle α that gives the maximum cone volume
d) Repeat this problem with the centre angle α as the independent variable.

Solution (partial)

The maximum for $x=\frac{\sqrt{6}}{3} \approx 0.8165$ corresponds to the angle $\alpha \approx 293.9^{\circ}$.

Exercise

Imagine that you fold a cone using the sector that was removed from the original circular piece of paper. The total volume of the two cones will be given by $f(x)=V(x)+V(1-x)$. Determine the maximum volume using non-CAS methods.

Solution

It is not easy to find the solution symbolically and voyage 200 fails to do it because it cannot handle cubic equations symbolically. By using a graphic or numerical tool we obtain the answer $x \approx 0.3240$ or $x \approx 0.6760$. It is difficult to see the maxima on the graph because f is "almost constant" when $0.25<x<0.75$. There is a relative minimum at $x=1 / 2$.

