Periodicity

For many years scientists tried to classify and organize the elements that create the world around us. It was not until the late 1800's when a number of scientists were able to observe certain properties of the known elements and began to organize them in systematic way. Below is a table of properties of many of the known elements. <u>Periodic Table</u>

Objective:

Different properties of the elements will be plotted and from this, a system of organization for the elements will be developed.

Name	Symbol	Atomic Number	Atomic Mass	Atomic Radius	Ionize Potential	Electroneg
Hydrogen	Н	1	1.01	37	13.6	2.2
Helium	He	2	4	0	24.59	0
Lithium	Li	3	6.941	152	5.39	1
Beryllium	Be	4	9.012	111	9.32	1.5
Boron	В	5	10.81	80	8.3	2
Carbon	С	6	12.01	77	11.26	2.5

- 1. Plot the atomic number (Z) on the x-axis and atomic mass on the y-axis. Add appropriate labels.
 - A. Double Click on the graph
 - B. The data is in a spread sheet the x values are in column c and the y values are in column d.

Questions:

- 1. Is there a relationship between atomic number and atomic mass. Explain.
- 2. What does the atomic number represent?
- 3. What is atomic mass? Explain in detail.
- 4. Is there an observable periodic trend in the plot?
- 5. Is the atomic mass dependent on the atomic number? Explain.

- 2. Plot atomic number on the x-axis and ionization potential on the y-axis and label the plot appropriately.
 - A. Label each Nobel gas with it's symbol.
 - B. Label each Alkali metal.

Questions:

- 1. Define ionization potential.
- 2. Does this plot show a periodic trend? Explain.
- 3. If there is a periodic trend, determine the maximum of each period and record the atomic number. Repeat for the minimum of each period.

- 3. Atomic radii is determine the bond length created between two atoms. Plot atomic number
 - $\left(Z\right)$ on the x-axis and atomic radii on the y-axis and label.

A. Label each Period.

Questions:

- 1. Define bond length.
- 2. Define atomic radius.
- 3. Record the minimum atomic number of the minimum atomic radii.
- 4. Does atomic radius increase with atomic number? What reasons would it or would it not increase?
- 5. How can an atom have an atomic radius of zero?

Analysis:

- 1. Hydrogen bonds to oxygen in a ratio of 2 hydrogen to one oxygen. Sodium also bonds to oxygen in this ratio. What other elements would bond with oxygen in a two to one oxygen ratio?
- 2. Fluorine bonds to sodium in a one to one ratio. What other elements would have this similar property?