$\qquad$
$\qquad$

## Problem 1 - Solving a quadratic equation by completing the square

The diagram on page 1.3 shows the plan for a trestle bridge. The upper part of each trestle is shaped like a parabola. In this activity, you will solve quadratic equations to answer questions about the bridge.

Let's take a closer look at curve described by one trestle section of the bridge. Graph the quadratic function $y=-x^{2}+8 x-15$, which models the curve of the trestle, on page 1.5. The $x$-axis represents ground level. Where does this bridge section meet ground level?

You could trace the graph to find the answer. Or you could obtain an exact answer by solving a related quadratic equation, $-x^{2}+8 x-15=0$.
Use the table below to record your work as you solve $-x^{2}+8 x-15=0$.
Some steps have been completed for you.
Algebra
$-x^{2}+8 x-15=0$
2. $\frac{-x^{2}}{-1}+\frac{8 x}{-1}-\frac{15}{-1}=\frac{0}{-1}$
3.
4.
5.
6.
7.
8.
s set one side equal to 0

At this point, stop and wait for the rest of the class to resume the activity on the handheld. Follow along to check your work so far.

## Bridge on the River Quad

Continue to solve the equation by isolating $x$.
Record your steps as before. Some steps have been completed for you.

## Algebra

Step
9. $(x-4)^{2}-1=0 \quad$ starting equation
10.
11.
12.
simplify
13.
break into two equations
14.

Follow along as your teacher derives the quadratic formula.

## Problem 2 - Using the quadratic formula

Solve each equation using the quadratic formula. You may need to simplify before applying the formula.

1. $-55 x+30=50 x^{2}$
2. $x^{2}+2 x+1=0$
3. $6 x^{2}+x=12$
4. $3 x^{2}=2 x+5$
5. $-11 x^{2}+4 x+7=0$
6. $-4 x^{2}+16 x=-28$
7. $2 x^{2}=-9 x-4$
8. $3 x^{2}+8 x-11=0$
9. $-2 x^{2}-5 x+9=0$
