Graphs of Polynomial Functions

ID: 10222

In this activity, you will explore:

- degree and leading coefficient of polynomials
- end behavior
- positive and negative infinity

Open the file PreCalcAct34_PolyGraphs_EN.tns on your handheld and follow along with your teacher to work through the activity. Use this document as a reference and to record your answers.

Problem 1 - Making comparisons

- Graph the functions below on page 1.3.

Sketch the shapes of the graphs to the right.

- $\quad \mathbf{f}(x)=x^{3}+x^{2}+1$
- $\mathbf{f} \mathbf{2}(x)=x^{5}-2 x^{4}-15 x^{3}-4 x^{2}+20 x$
- How are these graphs alike?
- Graph the functions below on page 1.5.

Sketch the shapes of the graphs to the right.

- $\mathbf{f} \mathbf{3}(x)=-x^{4}+4 x^{3}+7 x^{2}-22 x-24$
- $\quad \mathbf{f} 4(x)=x^{2}-5 x-24$
- How is the graph of $\mathbf{f 3}$ different than the graphs of $\mathbf{f 1}$ and $\mathbf{f} \mathbf{2}$?

- How is the graph of $\mathbf{f 4}$ similar to the graph of $\mathbf{f} \mathbf{3}$?
- What characteristic(s) of a function might affect its end behavior?

Problem 2 - Cubic functions

- Graph the functions below on page 2.2.

Sketch the shapes of the graphs to the right.

- $\quad \mathrm{f} 1(x)=x^{3}+2 x^{2}-x-2$
- $\mathbf{f} \mathbf{2}(x)=-x^{3}-2 x^{2}+x+2$
- On page 2.4, graph two more cubic functionsone in which the leading coefficient is positive and one in which it is negative. Sketch the shapes of the graphs to the right.

$$
\begin{array}{ll}
\therefore & \mathrm{f} 3(x)= \\
\square & \mathrm{f} 4(x)=
\end{array}
$$

- Make a conjecture about the sign of the leading coefficient of a cubic function and the graph of the function.

Problem 3 - Quartic functions

- Graph the functions below on page 3.2.

Sketch the shapes of the graphs to the right.

$$
\begin{aligned}
& \quad \mathrm{f} 1(x)=x^{4}+3 x^{3}-7 x^{2}-15 x+18 \\
& \\
& \mathrm{f} 2(x)=-x^{4}-3 x^{3}+7 x^{2}+15 x-18
\end{aligned}
$$

- On page 3.4, graph two more quartic functionsone in which the leading coefficient is positive and one in which it is negative. Sketch the shapes of the graphs to the right.

$$
\begin{array}{ll}
\therefore & \mathrm{f} 3(x)= \\
\square & \mathrm{f} 4(x)=
\end{array}
$$

- Make a conjecture about the sign of the leading coefficient of a quartic function and the graph of the function.

Problem 4 - Quadratic and quartic functions

- On page 4.2, graph a quadratic function and a quartic function, both with positive leading coefficients. Sketch the shapes of the graphs to the right.

$$
\begin{array}{ll}
\therefore & \mathbf{f}(x)= \\
\square & \mathbf{f 2}(x)= \\
\hline
\end{array}
$$

- On page 4.3, graph a quadratic function and a quartic function, both with negative leading coefficients. Sketch the shapes of the graphs to the right.

$$
\begin{array}{ll}
\therefore \mathbf{f 3}(x)= \\
\square & \mathbf{f 4}(x)=
\end{array}
$$

- Guess the end behavior of the graph of each function below.
- $y=(x-2)^{3}(x+4)^{3}$
- $y=-x^{8}$

Problem 5 - Cubic and quintic functions

- On page 5.2, graph a cubic function and a quintic function, both with positive leading coefficients. Sketch the shapes of the graphs to the right.
- $\quad \mathbf{f}(x)=$ \qquad
- $\mathbf{f 2}(x)=$ \qquad

II-nspire

- On page 5.3, graph a cubic function and a quintic function, both with negative leading coefficients. Sketch the shapes of the graphs to the right.
- $\mathbf{f 3}(x)=$ \qquad
- $\mathbf{f 4}(x)=$ \qquad
- Guess the end behavior of the graph of each function below.
- $y=(x-2)^{4}(x+3)^{3}$
- $y=-x^{9}$

Problem 6 - Summarize your findings

- Explain how to determine the end behavior of the graph of a polynomial function based on its degree and the sign of the leading coefficient.
(Hint: There are four cases for you to consider.)

