Powers and Roots of Complex Numbers

Contributed by Chuck Vonder Embse & Gene Olmstead

Let's explore the graphical and numerical representations of the powers of the complex number $(-1+i)^{t}$. First, numerically, a few powers of the number to see if there is a pattern:

$$(-1+\mathbf{i})^4$$

Complex numbers can be represented graphically using parametric equations. Let the x definition represent the real part of the number and the y definition represent the imaginary part of the number. First, store a complex number in Z and then use that in the parametric definitions

$$x = real(Z^t)$$

 $y = imag(Z^t)$ $(-1 + 1i) \rightarrow Z$

The Roots of Complex Numbers

The roots of complex numbers, including the roots of unity, can be represented graphically using De Moivre's theorem and parametric equations.

$$x = R^{(1/N)} \cos((A+360*t)/N)$$

$$y = R^{(1/N)} \sin((A+360*t)/N)$$

In these equations, R = absolute value of the complex number, N = the number of roots, A = the angle of the complex number in the Argand plane, and t = the index that moves through the N roots.

Example 1: Investigate the numerical values and the graph the 6 roots of $Z^6 = -64$.

Numerically, the computation below gives only one of the 6 roots, called the principal root. What about the other five roots?

$$\sqrt[6]{-64}$$

$$\sqrt{3} + i$$

$$64 \rightarrow R$$

 $180^{\circ} \rightarrow A$
 $6 \rightarrow N$

