

GEOMETRY

Objectives.

- Students will to identify the relationship between the scale factor of similar figures and their perimeters.
- Students will to identify the relationship between the scale factor of similar figures and their areas.
- Students will be able to identify the relationship between the scale factor of similar 3-D figures and their surface areas.
- Students will be able to identify the relationship between the scale factor of similar 3-D figures and their volumes.

Vocabulary

- Similarity ratio
- Perimeter
- Surface Area
- Volume

- Similar figures
- Pentagon
- Cube
- Triangle

About the Lesson

- To complete this activity, students will need to know how to change between pages, grab and move points.
- The multiple choice items are self-check and students can check them by pressing **Menu > Check answer**.
- Notes for using the TI-NspireTM NavigatorTM System are included throughout the activity. The use of the Navigator System is not necessary for completion of this activity.
- Teaching time: 30 45-minutes.

- Send out the Ratios_of_Similar_Figures.tns file.
- Monitor student progress using Class Capture.
- Use Live Presenter to spotlight student answers.

1.1 3.2 1.3 Ratiosres	ata 🚺 🕽
Seometry	
The second second second	
atos Ot Smilar Higures	

Tech Tips:

- This lesson includes screen
 captures taken from the TINspire CX handheld. It is
 also appropriate for use with
 the TI-Nspire family of
 products, including TI-Nspire
 software and TI-Nspire App.
 Slight variations to these
 directions may be required if
 using other technologies
 besides the handheld.
- Watch for additional Tech Tips throughout the lesson for the specific technology you are using.
- Access free tutorials at <u>http://education.ti.com/calcul</u> <u>ators/pd/US/Online-</u> <u>Learning/Tutorials.</u>

Lesson Files:

Student Activity

Ratios_of_Similar_Figures_stude
 nt.pdf

TI-Nspire document

• Ratios_of_Similar_Figures.tns

Lesson Materials

Problem 1 – Similar Triangles Pages 1.2 to 1.11 on the handheld.

Students will begin this activity by looking at similar triangles. Students are given two triangles that are similar. They are also given the perimeter or area of the triangle. They will discover that the ratio of perimeters of similar figures is a : b and the ratio of areas of similar figures is a2 : b2. Students will be asked to collect data by moving point A. Students are asked several questions about the relationships in the triangle.

TI-Nspire Navigator Opportunity: Screen Capture - Here and throughout the lesson you can use screen capture to ensure students are able to move point A to manipulate the figure.

Students will need to use the calculator to find the ratios. Once the ratio is found, have them **round** to hundredths and then use the approxFraction command if needed. (MENU > Number > Approximate to Fraction)

1.3 1.4 1.5 Relios_o_rev	DED 📋 🗙
What is the similarity ratio of the two triangles written in the form a : b?	Î
Student: Type response here.	
2.5▶approxFraction(5.£-14)	5/2
P.	

Problem 2 – Similar Figures Pages 2.1 to 2.13 on the handheld.

In Problem 2, students will be asked to repeat the exercise for Problem 1 on similar pentagons.

Ratios of Similar Figures

GEOMETRY

TI-Nspire Navigator Opportunity: Quick Poll - This is a good place to ask a quick poll to assess student understanding. You may choose to ask for the perimeter of Pentagon XYZTU for different values of the perimeter of Pentagon ABCDE.

Problem 3 – Extension to Three-Dimensional Figures Pages 3.1 to 3.14 on the handheld.

In Problem 3, students will apply what they have learned from Problems 1 and 2 to three-dimensional figures.

Student Solutions

1. Sample Answers

Position	AB	XY	Perimeter of XYZ	Perimeter of ABC	Ratio of Perimeters (Round to 2 decimals)
1	2	5	18.34	7.336	2.50
2	3.26	8.15	22.474	8.99	2.50
3	2.87	7.17	21.882	8.753	2.50
4	6.82	17.05	41.201	16.480	2.50

- 2. 5:2
- 3. 5:2
- 4. They are the same
- 5. Sample answers

Position	AB	XY	Area of XYZ	Area of <i>ABC</i>	Ratio of Areas (Round to 2 decimals)
1	2	4.99	13.262	2.122	6.25
2	3.29	8.22	21.934	3.509	6.25
3	2.68	6.69	17.871	2.859	6.25
4	6.82	17.06	45.371	7.259	6.25

Ratios of Similar Figures

GEOMETRY

- 6. 25:4
- 7. They are squares of the ratio of the triangles similarity ratio.
- 8. Sample answers

Position	AB	XY	Perimeter of XYZTU	Perimeter of ABCDE	Ratio of Perimeters (Round to 3 decimals)
1	3	2	13.35	20.025	0.666
2	3.23	2.15	12.258	18.387	0.666
3	2.54	1.69	12.181	18.271	0.666
4	7.31	4.87	13.403	20.104	0.666

- 9. 2:3 (Students may struggle with this because to get the EXACT ratio they will need to realize the ratio is actually 0.6 repeating.)
- 10. 2:3 (Same issue as on question 9)
- 11. They are the same
- 12. Sample answers

Position	AB	XY	Area of XYZTU	Area of ABCDE	Ratio of Areas (Round to 3 decimals)
1	3	2	8.803	19.806	0.444
2	3.29	2.19	9.003	20.256	0.444
3	2.63	1.75	9.081	20.431	0.444
4	6.81	4.54	8.929	20.091	0.444

- 13. 4:9 (Students may struggle with this because to get the EXACT ratio they will need to realize the ratio is actually 0.4 repeating.)
- 14. They are the squares of the similarity ratio of the pentagons.
- 15. a : b
- 16. a² : b²
- 17. Sample answers

Position	AB	XY	Surface Area of Small Cube	Surface Area of Large Cube	Ratio of Surface Areas (Round to 3 decimals)
1	3	2	24.007	54	0.444
2	3.1	2.07	25.633	57.7	0.444
3	2.65	1.77	18.727	42.1	0.444
4	5.22	3.48	72.647	163	0.445

18.2:3

- 19. 4 : 9 (Students may struggle with this because to get the EXACT ratio they will need to realize the ratio is actually 0.4 repeating.)
- 20. The surface area ratio is the square of the similarity ratio.
- 21. Sample answers

Position	AB	XY	Volume of Small Cube	Volume of Large Cube	Ratio of Volumes (Round to 6 decimals)
1	2	1.5	3.378164557	8.007501172	0.421875
2	3.3	2.48	15.228841627	36.097994969	0.421875
3	1.75	1.31	2.272069582	5.385646417	0.421875
4	4.61	3.46	41.420730442	98.182472158	0.421875

- 22. 27 : 64
- 23. They are cubes of the similarity ratio
- 24. a² : b²
- 25. a³ : b³

