

Introducing the Chain Rule

The rules for the differentiation of the standard function forms are readily derived by using methods such as the definition of a derivative. More complicated forms, however, require a little more work. In this activity, we consider composite functions of the form f(g(x)).

To differentiate composite functions, we use the Chain Rule. The Chain Rule is as follows:

If y = f(u) and u = g(x) are both differentiable, then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

1. Use the Chain Rule to find the derivative of $y = \sin(x^2)$.

Use the spreadsheet on page 2.3 to check your answer. Enter each step in Column B. The Xs will turn into \checkmark s if you have entered a correct expression. If you do not see a \checkmark , then check your work and try again.

2. Find the derivative of $sin(x)^2$ by hand. Then check your answer using page 2.3.

3. Differentiate:
$$\frac{d}{dx}(\ln(x^2))$$

4. Differentiate:
$$\frac{d}{dx} (\sin(\tan(x)))$$

5. Clearly describe this method for a composite function, y = f(g(x)).