\qquad
\qquad

Introducing the Chain Rule

The rules for the differentiation of the standard function forms are readily derived by using methods such as the definition of a derivative. More complicated forms, however, require a little more work. In this activity, we consider composite functions of the form $f(g(x))$.

To differentiate composite functions, we use the Chain Rule. The Chain Rule is as follows:
If $y=f(u)$ and $u=g(x)$ are both differentiable, then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

1. Use the Chain Rule to find the derivative of $y=\sin \left(x^{2}\right)$.

Use the spreadsheet on page 2.3 to check your answer. Enter each step in Column B. The Xs will turn into $\checkmark s$ if you have entered a correct expression. If you do not see a \checkmark, then check your work and try again.
2. Find the derivative of $\sin (x)^{2}$ by hand. Then check your answer using page 2.3.
3. Differentiate: $\frac{d}{d x}\left(\ln \left(x^{2}\right)\right)$
4. Differentiate: $\frac{d}{d x}(\sin (\tan (x)))$
5. Clearly describe this method for a composite function, $y=f(g(x))$.

