\qquad
\qquad

Problem 1 - Amplitude and Period

On page 1.3, click on the sliders to change the values of a and b in the function $f(x)=a \sin (b x)$. Click on the hide/show slider to show amplitude and period.

- Describe how the values of a and b affect the shape of the graph.
- What happens if a is negative?
- Complete the following statement:

For $a \neq 0$ and $b>0$, the graph of $f(x)=a \sin (b x)$ has an amplitude of \qquad and a period of \qquad .

Problem 2 - Vertical Shift

On page 2.2, click on the slider to change the value of d in the function $f(x)=\sin (x)+d$. Click on the show/hide slider to show the horizontal line $y=d$.

- Describe how the value of d affects the shape of the graph.
- Complete the following statement:

The graph of $f(x)=\sin (x)+d$ has a vertical shift of \qquad .

Problem 3 - A Simple Phase Shift

On page 3.2, click on the slider to change the value of c in the function $f(x)=\sin (x+c)$. Click on the show/hide slider to show the vertical line $x=-c$.

- Describe how the value of c affects the shape of the graph.

Vertical and Phase Shifts

Problem 4 - Combining Transformations

On page 4.2, click on the sliders to change a, b, c, and d in the function $f(x)=a \sin (b x+c)+d$.

- Which of the four parameters have an impact on the phase shift of the graph?
- Complete the following statement:

For $a \neq 0$ and $b>0$, the graph of $f(x)=a \sin (b x+c)+d$ has a phase shift of
\qquad .

- For functions of the form $f(x)=a \sin (b x+c)+d$, with $a \neq 0$ and $b>0$, the graph has:
- amplitude = \qquad
- phase shift = \qquad
- period = \qquad
- vertical shift = \qquad

Problem 5 - Cosine Function

- For functions of the form $f(x)=a \cos (b x+c)+d$, with $a \neq 0$ and $b>0$, the graph has:
- amplitude = \qquad
- phase shift = \qquad
- period = \qquad
- vertical shift = \qquad

Problems 6 and 7- Putting It All Together

For the graph on page 6.2, find the equation of a cosine function that has the same graph as the sine function.

- $\mathbf{f 1}(x)=-1.5 \sin \left(x+\frac{\pi}{4}\right)+4$

For the graph on page 7.2, find the equation of a cosine function that has the same graph as the sine function.

- $\mathbf{f 1}(x)=3 \sin (2 x)-5$

