Name \qquad

Number of Regions - An Introduction to the TI-Nspire CAS Student Worksheet

Created by Melissa Sutherland, State University of New York at Geneseo
Below you will find copies of the notes provided on the various pages of the activity in case you prefer not to scroll the windows on the pages of the activity on the TI-Nspire handheld. Please record your work as you go as asked on this sheet and in the activity in the boxed areas below.

1.1

Number of Regions - An Introduction to TI-Nspire CAS
In this activity you will investigate the problem of counting the maximum number of regions determined by n lines in a plane. In doing so, you will be introduced to the various features of the TI-Nspire. Be sure to read all directions.

1.2

Page 1.3 is a Graphs \& Geometry page in Plane Geometry View. If you have used Geometer's Sketchpad or Cabri before, you should find familiar tools under the menu key.

On page 1.3, you will add lines one at a time (see Hints below for how to do this), moving them around to create the maximum number of regions.

As you do, count the maximum number of regions you can make using $0,1,2,3$ and 4 lines. Record your counts for the maximum number of regions using 1, 2, 3 and 4 lines in the table provided on page 1.4, which is a Lists \& Spreadsheet page.

Hints:

1. To add a line, use menu, select Points and Lines, and choose Line. Use the NavPad, position the point where you want it, press the Click button, and then move the NavPad to draw the line. Press the Click button to finish the line. The tool will still active and you can add another line. To put the tool away, use esc.
2. To make the lines on the screen longer, grab the "end" of the line by putting the cursor at the "end" of the line and holding down the Click button until the hand turns to a fist. Use the NavPad to drag the line longer. Use esc to release the line.
3. To move a line around the screen, grab (as directed above) the line away from the "ends" and use the NavPad to rotate the line or grab the point to move the entire line. Use esc to release the line.

1.3

Below record the image of your 4 lines. Number the regions.

1.1	1.2 1.3	1.4 Rad auto real	-
			1 cm

1.4

Record the maximum number of regions you determined on page 1.3 for $\mathbf{0 , 1}, 2,3$, and 4 lines.

1.5

We have only collected data for $0,1,2,3$, and 4 lines in the plane. While we could probably continue for a few more lines, it quickly becomes clear that we might want a formula that would give us the maximum number of region formed for any number of lines in the plane.
Looking back at your table on page 1.4, is this relationship linear? On the student handout, explain why or why not.

Is this relationship linear? Explain why or why not.

1.6

Let's graph our data points to determine what type of function we have.
Page 1.7 has a split screen containing a Lists \& Spreadsheet application and a Data \&
Statistics application. You will find that all the data you entered in the table on page 1.4 is now also on page 1.7. To toggle between the parts of the split screen, use the ctrl key and the tab key to move from the Lists \& Spreadsheet application on the left of page 1.7 to the Data \&
Statistics application on the right.
To create a scatter plot of your data points in the table on page 1.7, click on the "Click to add variable" on each axes of the graph. Put the variable lines on the x -axis and the variable regions on the y-axis.

1.7 Split Screen

1.8

You can also plot the data points in a Graphs \& Geometry application as in page 1.9. To try this, on page 1.9, under the menu key, select Graph Type and Scatter Plot. At the bottom, use tab to go from one variable to the other, hitting enter and the NavPad to select the variable lines to store in x and the variable regions to store in y.

1.9 Graphs \& Geometry page

1.10

What type of function does it appear might best fit our data points (at least for positive integer values of x)?

Doesn't it seem to be quadratic?
To investigate this, we'll graph $f(x)=x^{2}$ on the same axes as our scatter plot on page 1.9 and drag the graph to hand fit it to our data points. To do this, on page 1.9, under the menu key, select Graph Type and Function. This should keep the plot of the data points and also allow you to now enter x^{2} in $f 1(x)=$

We will now drag the graph of $f 1(x)=x^{2}$ to hand fit it to the data points. First, you may need to hit esc to get the cursor to move up to the graph.

Next, grab the graph by moving the cursor to the graph until the graph is blinking and holding down the Click button until the hand closes. If you grab on the curve away from the vertex, you can stretch and shrink the graph. If you grab on the curve near the vertex, you can drag the curve horizontally and vertically.

Now drag the graph with the NavPad until the graph best fits the data points.
Use esc to release your grab.
Note that the quadratic expression changes as you drag the curve.

Do this now and write the quadratic function that you get to best fit the data points on the student worksheet.

Hand fit quadratic function

$f 1(x)=$

1.11

Now we'll see how to do a quadratic regression using our data points and then we'll compare the regression to our hand fit quadratic. We'll do this in two different applications so you can see how to do regression in both.

First, we'll use the Lists \& Spreadsheet application. You'll find a copy of your table from page 1.4 on page 1.12. To find the quadratic regression in this application put the cursor in column C, use the menu key and select Statistics, Stat Calculations, and Quadratic Regression. Choose lines for the X List and regions for the Y List and $f 2$ for where to Save RegEqn to and c[] for 1st Result Column. Use tab to go from input to input.

Information from the regression will be put into columns C and D .
The quadratic from the regression is in $f 2(x)$. To see its graph, go back to page 1.9's entry line and the NavPad to select $\mathrm{f} 2(\mathrm{x})$ and hit enter to plot f 2(x).

Record the quadratic you got from this regression.
$f 2(x)=$

1.12 Lists \& Spreadsheet page where the regression is done.

1.13

Next we'll show how to add a page to a problem, in this case a Data \& Statistics page, so we can explore an alternate way to get a quadratic regression of our data points.

To do this, hit the ctrl key and then the Home key, to get the Tool menu. Select Insert and Page. Choose Data \& Statistics.

Click on the axes to select lines for the x -axis and regions for the y -axis.
If your data points do not show up, hit menu, Window/Zoom, and Zoom-Data.
To get the quadratic regression, hit menu, Analyze, Regression, and Show Quadratic.

1.14 (It will become $\mathbf{1 . 1 5}$ after you insert the page as directed by page 1.13.)

We want to compare the quadratic you found by hand fitting the graph of x^{2} to the data points and the quadratic found using regression. Note that to compare them, we would like to expand the hand fit quadratic.

To do this, use ctrl and tab to toggle to the Calculator application on the right side of this page. Then hit the catalog key under the clear key, 2, find Algebra and select expand. Type expand $(f 1(x), x)$ and hit enter. Write this expanded version of $f 1(x)$ on the student worksheet.

Expanded form of $f(x)=$

How well does your $f 1(x)$ compare to the regression quadratic, $f 2(x)$?
In the screen on the right, type $f 2(x)$ in the input line and hit enter to compare.
$f 2(x)=$

Describe how well your $f 1(x)$ compares to the f 2(x).

1.15 (Will become page 1.16)

Let's now use algebra to find the quadratic function passing through our data points.
Let x be the number of lines in the plane.
Let y be the maximum number of regions determined by the x lines.
We want to find coefficients A, B, and C such that $A x^{2}+B x+C=y$.

Use three of your (x, y) coordinates to set up a system of three equations and three unknowns.
Record your system on the student worksheet.

System of three equations and three unknowns:

On the next page, enter your augmented matrix. Use tab or the NavPad to go from entry to entry, entering your values. Hit enter to find the reduced row echelon form of your matrix.

You can now read off the values for A, B, and C. Record the values of A, B, and C on the student worksheet.

How does this quadratic compare to the hand fit quadratic $f 1(x)$ and the regression quadratic $f 2(x)$ that you found earlier?

1.16 (Will become page 1.17)

Record the matrix you entered.

Record the reduced row echelon form of your matrix.

Record the coefficient solutions to your system below.
$A=$
$B=$
$C=$
Record the quadratic $A x^{2}+B x+C=y$ obtained by substituting these values in:

How does this quadratic compare to the hand fit quadratic $f 1(x)$ and the regression quadratic $f 2(x)$ that you found earlier?

1.17 (Will become page 1.18)

You have now had some experience with what the TI-Nspire CAS is capable of and its ability to allow students to look at problems through multiple linked representations.

