Interactive dynamic computation using the Notes application T ${ }^{3}$ Conference: LEARN ENERGIZE CONNECT

Wednesday $4^{\text {th }}$ November 2013

Frank Moya, T^{3} Australia trainer
frank.moya@bigpond.com

Overview

All of these activities include the use of interactive dynamic computation in the Notes application to explore mathematical patterns, make and test conjectures about later iterations of the patterns and make connections between the mathematics encountered in the, seemingly unconnected, activities.

Activity 1: Pascal's triangle

In this activity you will create an interactive model of Pascal's triangle in which the number of lines displayed in controlled by a slider.

Instructions:

1. Open a new document and select Add Notes.
2. From the context menu (i.e. press atrimenu), select Insert Math Box.
3. In the Math Box, input: seq(). With the cursor inside the brackets, menu >Calculations > Probability > Combinations, enter. ' $\operatorname{seq}(\mathbf{n C r}())$ ' will now be displayed.
4. To display, say, the $5^{\text {th }}$ row of Pascal's triangle, edit the input to $\operatorname{seq}(\mathrm{nCr}(\mathbf{4}, \boldsymbol{r}), \boldsymbol{r}, \mathbf{0}, \mathbf{4})$, enter. You will note that the 'seq' command substitutes $r=0$ to $r=4$, generating $\left\{{ }^{4} \mathrm{C}_{0},{ }^{4} \mathrm{C}_{1},{ }^{4} \mathrm{C}_{2},{ }^{4} \mathrm{C}_{3},{ }^{4} \mathrm{C}_{4}\right\}$.
Generalise this by replacing the ' 4 ' with a parameter, n. The value of n will be controlled by a slider in the Geometry application, as follows.
5. To add a Geometry application window to the same page, press doct (or atririon on older grey 'Clickpad' models) > Page Layout > Custom Split enter. Press \square until the screen is split horizontally. Press $\boldsymbol{\sim}$ (down arrow) until there is a split of about 5:1, then enter. Press atro tab to move between top and bottom windows. Select bottom window, menu > Add Geometry.
6. To add a slider to the Geometry application in the bottom window, menu > Actions > Insert Slider enter. Move the slider to the middle of the window, and enter. Input the symbol n in place of $v 1$, enter. Press ctrn menu > Settings. In the dialog box, set Minimum: 0, Maximum: 12 and Step Size: 1, enter enter.
7. Generalise step 4 above, as follows. In the top window, in a new Math box, store the value of n as a (i.e. input n ctrrvar a enter). Edit the command ' $\operatorname{seq}(\mathrm{nCr}(4, r), r, 0,4)$ ' to ${ }^{\prime} \boldsymbol{s e q}(\operatorname{seq}(\mathrm{nCr}(\boldsymbol{n}, r), r, 0, \boldsymbol{a}), \boldsymbol{n}, \mathbf{0}, \boldsymbol{a})$ '.
8. Change the value of n by adjusting the slider. Observe changes to Pascal's triangle as the value of n is altered.

- What are some of the number patterns that you observe in Pascals triangle?
- Set $n=0$. Add another Math box and input 11^{n}. Observe the value of 11^{n} and Pascal's triangle as the value of n is systematically increased. What connection can you make? How can you predict the value of 11^{n} from Pascal's triangle for $n>5$?
- What are some relationships between the numbers in the columns of this version of Pascal's triangle?

Activity 2: Expansion of $(a+b)^{n}$

In this activity you will create an interactive page where mathematical patterns in the expansion of $(a+b)^{n}, n \in Z$ may be observed dynamically, as the value of n is varied using a slider.

Instructions:

1. Add a new problem to your document, with a Notes page, as follows. Press docr > Insert > Problem > Add Notes.
2. To add a Geometry window to the same page, press doco > Page Layout > Custom Split enter. Press \oplus until the screen is split horizontally. Press - (down arrow) until there is a split of about 5:1, then enter. Press tatrab to move between top and bottom windows. Select bottom window, menu > Add Geometry.
3. To add a slider to the Geometry application in the bottom window, menu > Actions > Insert Slider enter. Move the slider to the middle of the window, and enter. Input the symbol n in place of $v l$, enter. Press atrm menu > Settings. In the dialog box, set Minimum: 0, Maximum: 20 and Step Size: 1, enter enter.
4. Select the Notes (top) window and input 'expand $\left((a+b)^{n}\right)$ ' in a Math Box, as follows. menu > Calculations > Algebra > Expand. Inside the brackets, input $(a+b)^{n}$. The output will show the expansion for the current value of n, as shown on the slider.
5. Systematically change the value of n and deduce the mathematical patterns as n varies.

- What are some relationships between the mathematical patterns observed in Activities 1 and 2?
- What are some advantages of exploring these patterns in a dynamic Notes page, rather than in a static Calculator page?

Activity 3: Fibonacci numbers generated in various ways

In this activity you will, firstly, generate the sequence of Fibonacci numbers in the Lists and Spreadsheet application. You will then use the connection between the Fibonacci numbers and Pascal's triangle to create an interactive dynamic Fibonacci number generator in a Notes page.

3.1 Fibonacci sequence in a spreadsheet using first-principles recursion

1. Add a new problem to your document, with a Lists and Spreadsheets page, as follows. Press docr > Insert > Problem > Add Lists and Spreadsheets.
2. Name column A term and name column B fibonacci. To fill down the term number, input the numbers1 and 2, in cells A1 and A2 respectively. From cell A1, press 厄shiff (down arrow), then otris then (down arrow) to fill own to cell A20, then enter.
3. Press 7 to return to the top. To generate the Fibonacci sequence by first-principals recursion, input the number 1 in cells B1 and B2. In cell B3, input the formula $=\mathrm{B} 1+\mathrm{B} 2$ and enter. From cell B3, press ctrn 总 then (down arrow) to fill own to cell B20, then enter. The formula will automatically update to ' $=\mathrm{B} 2+\mathrm{B} 3$ ' in cell B 4 , down to ' $=\mathrm{B} 18+\mathrm{B} 19$ ' in cell B20.

3.2 Fibonacci numbers in a spreadsheet using the recurrence relation in Generate Sequence

Name column C fib_2. From the shaded cell C \downarrow, press menu > Data > Generate sequence. In the dialog box, enter the recurrence relation, initial terms and number of terms, as shown.

- Investigate and graph the ratio of consecutive terms.
- Investigate the sum of any 10 consecutive terms, divided by 11 .
- How are the Fibonacci numbers related to Pascal's triangle?

3.1 Interactive dynamic Fibonacci numbers in Notes application

1. Add a new problem to your document, with a Notes page. Add a Geometry window to the page: press docr > Page Layout > Custom Split enter. Press \square until the screen is split horizontally. Press \downarrow (down arrow) until there is a split of about 5:1, then enter. Press atro tab to move between top and bottom windows. Select bottom window, menu > Add Geometry.
2. To add a slider to the Geometry application in the bottom window, menu > Actions > Insert Slider enter. Move the slider to the middle of the window, and enter. Input the symbol n in place of $v l$, enter. Press atrm menu > Settings. In the dialog box, set Minimum: 0, Maximum: 50 and Step Size: 1, select Minimise enter enter. Change document settings to Display Digits: Float 12.
3. From the Notes window, press and select the \sum_{0}^{∞} template. In accordance with the occurrence of Fibonacci numbers in Pascal's triangle, input $\sum_{i=0}^{(n-1) / 2}(\mathrm{nCr}(n-i-1), i)$.

- Verify that the numbers generated using the pattern in Pascal's triangle are identical to the Fibonacci numbers obtained recursively in the spreadsheet.

Activity 4: Continued square roots

In this activity you will generate continued square roots of the form $S_{n}=\sqrt{a_{1}+\sqrt{a_{2}+\sqrt{a_{3}+\ldots \sqrt{a_{n}}}}}$, where $a_{1} \in N$ and $a_{1}=a_{2}=a_{3}=a_{n}$. You will investigate the values of a_{1} for which $\lim _{n \rightarrow \infty}\left(S_{n}\right)$ is an integer. You will make connections to other areas of mathematics, including previous activities.

Instructions:

As a preliminary to the investigation, you will explore the convergence of $\sqrt{2+\sqrt{2+\sqrt{2+\ldots \sqrt{2}}}}$ in the Calculator application.

1. Add a new problem to your document, with a Calculator page. Change document settings to Display digits: Float 6.
2. Input $\sqrt{2}$. (include the decimal point after the 2 to get a rational approximation), then enter.
3. Copy the previous input to the entry line and edit it to $\sqrt{2 .+\sqrt{2}}$, enter. Repeat this procedure for 4 more iterations.

- Does $\sqrt{2+\sqrt{2+\sqrt{2+\ldots \sqrt{2}}}}$ appear to be converging to a value? Is this value an integer?

Next, you will use the Notes application to investigate other values of a for which the infinitely recursive expression $\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\ldots}}}}$ converges to an integer value.
4. Add a Notes page to the problem: press datroco (or atrm) > Add Notes.
5. Add a Geometry window to the same page: press doco > Page Layout > Custom Split enter. Press \pm until the screen is split horizontally. Press $\boldsymbol{\sim}$ (down arrow) until there is a split of about 3:1, then enter. Press tatry to move between top and bottom windows. Select bottom window, menu > Add Geometry.
6. Add a slider to the Geometry application in the bottom window: menw > Actions > Insert Slider enter. Move the slider to the middle of the window, and enter. Input the symbol a in place of $v 1$. Press atrl menu > Settings. In the dialog box, set Minimum: 2, Maximum: 110 and Step Size: 1.
7. Copy the last input in the Calculator page and paste it in the Notes window. Edit the expression to $1 . \times \sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a}}}}}}$ (include $1 . \times$ to get a rational approximation).
8. Use the slider to systematically change the value of a.

- For what values of a does the recursive expression converge to an integer?
- What are some patterns in these values of a ?
- How can you predict the values of a for which convergence to an integer value will occur?
- Explain why these particular values of a result in convergence to an integer.
- What is special about the case where $a=1$?

Activity 5: Factors of $x^{n}-1$

In this activity you will look for patterns in the factorisation of $x^{n}-1, n \in N$.

Instructions:

1. Add a new problem to your document, with a Notes page. Add a Geometry window to the page: press doco > Page Layout > Custom Split enter. Press \square until the screen is split horizontally. Press \downarrow (down arrow) until there is a split of about 5:1, then enter. Press atro tab to move between top and bottom windows. Select bottom window, menu > Add Geometry.
2. Add a slider to the Geometry application in the bottom window: menv > Actions > Insert Slider enter. Move the slider to the middle of the window, and enter. Input the symbol n in place of $v 1$, enter. Press ctrtmenu > Settings. In the dialog box, set Minimum: 0, Maximum: 64 and Step Size: 1 , select Minimise enter enter. Set the value of n to $n=1$.
3. From the Notes window: menu> Calculation > Algebra>Factor. Then edit to 'factor $\left(x^{n}-1\right)$ '.

- Systematically vary the value of n. What patterns can you observe?
- Predict the factors when $n=71, n=81, n=128$. Check your predictions by editing the value of n on the slider.
- What are some advantages of carrying out this exploration in Notes, rather than Calculator?

