

Name .	 	 	
Class	 	 	

Problem $1 - f(x) \rightarrow f(x) + k$

How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of k? Negative values of k?

Problem $2 - f(x) \rightarrow f(x - h)$

How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of h? Negative values of h?

Problem $3 - f(x) \rightarrow a \cdot f(x)$

How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of a? Negative values of a?

Problem $4 - f(x) \rightarrow f(a \cdot x)$

How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of a? Negative values of a?

Problem 5

- 1. What kind of transformation is $f(x) = x^2 2$?
- 2. The function $f(x) = x^5$ will get closer to the *y*-axis under the transformation $p(x) \rightarrow a^*p(x)$?
 - ☐ True ☐ False
- 3. Describe the change in the graph from $f(x) = x^3$ for the function $f(x) = (x-2)^3 + 3$?
- 4. Describe the transformation for $f(x) = x^4$ to $g(x) = 16x^4$.
- 5. Describe the transformation for $f(x) = x^3$ to $g(x) = x^3 + 3x^2 + 3x + 1$.
- 6. Write an equation for that transforms the graph of x^3 down 3 units and right 2 units.
- 7. Write an equation that reflects the graph of x^2 over the x-axis.