Name \qquad
Class \qquad
Problem $1-f(x) \rightarrow f(x)+k$
How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of k ? Negative values of k ?

Problem $2-f(x) \rightarrow f(x-h)$
How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of h ? Negative values of h ?

Problem 3-f(x) $\rightarrow \mathbf{a} \cdot \boldsymbol{f}(x)$
How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of a ? Negative values of a ?

Problem $4-f(x) \rightarrow f(a \cdot x)$
How do the values in Column C compare to the values in Column B as you change the number in cell D3?

How do you think the graph will change for positive values of a ? Negative values of a ?

Problem 5

1. What kind of transformation is $f(x)=x^{2}-2$?
2. The function $f(x)=x^{5}$ will get closer to the y-axis under the transformation $p(x) \rightarrow a^{\star} p(x)$?

True
False
3. Describe the change in the graph from $f(x)=x^{3}$ for the function $f(x)=(x-2)^{3}+3$?
4. Describe the transformation for $f(x)=x^{4}$ to $g(x)=16 x^{4}$.
5. Describe the transformation for $f(x)=x^{3}$ to $g(x)=x^{3}+3 x^{2}+3 x+1$.
6. Write an equation for that transforms the graph of x^{3} down 3 units and right 2 units.
7. Write an equation that reflects the graph of x^{2} over the x-axis.

