Finding Line of Best Fit Using "Q-Points"

Cindy Johnson

1) Have students collect data for a scatter plot and have them enter the data into [$L 1]$ and $[L 2]$. You could also have each student contribute one data point using Navigator, and then send the entire list back to the kids.
2) Have students find the five number summary for [L1]. To do this, push the STAT key and then arrow right one place to "CALC."

Figure 1
You want to choose "1-Var Stats" from the menu and push ENTER. This will show "1-Var Stats" on your home screen. Enter [L1] after this command to get the statistics for your first list. Then push ENTER. You will need to arrow down to the second half of the screen to find your five number summary.

Figure 2

3) Repeat this process in Step 2 for [L2] and write down Q_{1} and Q_{3} for List 2.
4) You are going to use a combination of your quartile points (Q-Points) to help calculate the line of best fit.

If the data has a positive correlation, your Q-Points are going to be: $\left([\mathrm{L} 1] \mathrm{Q}_{1},[\mathrm{~L} 2] \mathrm{Q}_{1}\right)$ and $\left([\mathrm{L} 1] \mathrm{Q}_{3},[\mathrm{~L} 2] \mathrm{Q}_{3}\right)$

If the data has a negative correlation, your Q -Points are going to be: $\left([L 1] \mathrm{Q}_{1},[\mathrm{~L} 2] \mathrm{Q}_{3}\right)$ and $\left([\mathrm{L} 1] \mathrm{Q}_{3},[\mathrm{~L} 2] \mathrm{Q}_{1}\right)$

These points give students their $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ for calculating the slope and finding the equation of the line.
5) Have students put their equation into the $Y \equiv$ menu and graph the line of best fit along with the scatter plot.

Figure 3
6) Once students have graphed their line of best fit, use the Navigator to do a screen capture and discuss the different lines, scales, etc. that are shown on the student's calculators.

