MATHEMATICAL METHODS CAS UNIT ONE

POLYNOMIALS

Earlier we saw that you could build up complex polynomials from a series of simpler polynomials.
A real polynomial is of the form:

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots . .+a_{n} x^{n},
$$

where each power is a positive integer ($n \in J^{+}$) and the degree of the polynomial is the highest power of the polynomial.

The first degree polynomial is called a linear function.
The second degree polynomial is called a quadratic function.
The third degree polynomial is called a cubic function.
The fourth degree polynomial is called a quartic function.

Exercise One:

Let $f(x)=3 x^{2}-4 x-5$ and $g(x)=x^{3}-6 x^{2}+8 x+2$. Find the rules for the following polynomials.
(i) $\quad-f(x)$ and $-g(x)$
(ii) $2 f(x)$
(iii) $-3 g(x)$
(iv) $\quad f(x)+2 g(x)$

GRAPHS OF POLYNOMIALS

When using the CAS calculator, it is important to include all the key features on the graph. These include:
(i) the axes labelled.
(ii) x and y intercepts.
(iii) turning points or points of inflexion.
(iv) points of intersection.
(v) if the graph cuts the x axis once then a second reference point is necessary. (vi) asymptotes. (not necessary for polynomials)

Investigating polynomial graphs

| On Home screen,
 NewProb F 62 |
| :--- | :--- | :--- |
| Define $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ |

| You will need to change the window to |
| :--- | :--- | :--- |
| see all the important feature so the graph. |

