Discovering A Fundamental Fact about Integration

by Dave Slomer
You have investigated Riemann sums and have a good feel for what $\int_{a}^{b} f(x) d x$ means [the area between f and the x-axis from a to b], what it looks like [the graph below], and how to approximate it [by summing areas of a lot of approximating rectangles]. But there is a symbolic way to calculate many such integrals, giving exact results. Luckily, the TI-89 can compute quite well symbolically.

Exercise 1: Use your head, a sketch on coordinate axes, and a well-known formula from geometry (but $\underline{\boldsymbol{n o t}}$ your TI-89) to find the exact value of $\int_{0}^{1} x d x$. (The only calculus involved is in correctly interpreting the symbols to make the corresponding sketch.)

Exercise 2: To find some more exact values of integrals, you can quit using your head (well, not entirely!) and let your ' 89 do the work. Your ' 89 can even perform symbolic operations in its Data/Matrix Editor, by having one column refer to another.

- Go into your TI-89's Data/Matrix Editor (press APPS $63 \odot \odot$ and type a Data variable name that is not in use, such as integdat, and press ENTER).
- Move the cursor to row 1 of column $\mathbf{c 1}$ and type $\mathbf{x}^{\wedge} \mathbf{2}$ ENTER.
- Move the cursor so that $\mathbf{c} \mathbf{2}$ is highlighted (press $(\mathbb{(}) \odot$) and type• $(\mathbf{c} 1, \mathbf{x}, \mathbf{0}, \mathbf{1})$ ENTER. [The. symbol is 2nd 7 .]
The screen should look like figure 1 if you move the cursor so that $\mathbf{c 2}$ is highlighted.

Because of the formula stored in $\mathbf{c 2}$, the screen says that $\int_{0}^{1} x^{2} d x=\frac{1}{3}$, since row 1 of column $\mathbf{c} 1$ contains $\mathbf{x}^{\wedge} \mathbf{2}$ and row 1 of column $\mathbf{c 2}$ contains $1 / 3$. Overall, the formula in $\mathbf{c 2}$ tells the ' 89 to evaluate the integral from 0 to 1 for any function of x in column $\mathbf{c 1}$ and to put the result in column c2. So, column c2 contains the value of $\int_{0}^{1} c 1(x) d x$ for each function of x in column $\mathbf{c 1}$.

In rows 2 through 4 of column c1, type $\mathbf{x}^{\wedge} \mathbf{3}$ ENTER, $\mathbf{x}^{\wedge} \mathbf{4}$ ENTER, and $\mathbf{x}^{\wedge} \mathbf{5}$ ENTER. The screen will look like the one in figure 2, but the ' 89 will have calculated 3 more integrals in column c2.

DíTí			
	0.1		$\underline{C 2}$
1234	$\mathrm{x}^{\wedge} 2$		133
	$x^{*} 3$		
	$x^{\wedge} 4$		
	$x^{*} 5$		
r-4E1=x*5			
F-TAl\|		Fiblididy	Fifi

Fill in column $\mathbf{c 2}$ of the data grid above with the values of the integrals returned by your ' 89 and then use inductive reasoning to try to guess a formula: $\int_{0}^{1} x^{n} d x=$ \qquad .

Exercise 3: Apply your Exercise 2 formula to the triangle whose area you found in Exercise 1. Did you get the same result as in Exercise 1? If not, re-think Exercise 1 or 2.

Exercise 4: Using your head, a sketch, and a well-known formula from geometry (but not your '89), complete the following formula:

$$
\int_{0}^{b} x d x=
$$

\qquad .

Exercise 5: In the Data/Matrix Editor [press APPS 6 ENTER to re-use the current data grid from Exercise 2], modify the formula stored in $\mathbf{c} 2$ to find a more general result: $\int_{0}^{b} c 1(x) d x$ [move the cursor so that $\mathbf{c} \mathbf{2}$ is highlighted, press ENTER and change the 1 to $\mathbf{a} \mathbf{b}$ so that the command line reads $\cdot(\mathbf{c} 1, \mathbf{x}, \mathbf{0}, \mathbf{b})$, and press [ENTER]. The screen should look like the one in figure 3 if you move the cursor so that $\mathbf{c} 2$ is highlighted.

Fill in column $\mathbf{c 2}$ of the data grid above with the values of the integrals returned by your ' 89 and then use inductive reasoning to make a guess at a formula: $\int_{0}^{b} x^{n} d x=$ \qquad .

Exercise 6: Apply your Exercise 5 formula to the triangle whose area you found in Exercise 4. Did you get the same result both ways? If not, re-think Exercise 4 or 5.

Exercise 7: Change column c1 of the data grid to read as in figure 4. [To do so, move the cursor to row 1, column $\mathbf{c 2}$, type $\boldsymbol{\operatorname { c o s } (\mathbf { x })}\{$ or press 2 nd $\mathbf{Z}\}$, and press ENTER, which puts you in row 2.

$\overline{F i v}$	$\text { FEt stur }]$	4	
Dítí			
	01	02	
1	EDS(X)		
2	Sirc)		
3	\cdots		
4	$1,4+1)$		
C2\%	(E1, X, B, E)		
F-1ik	FiAD AlUTD	Fifi	

Fill in column $\mathbf{c} 2$ of the data grid above with the values returned by your ' 89 . Then apply inductive reasoning to these results and the results from Exercise 2 to make a guess at a more general formula: \qquad Hint: think derivatives and be prepared to write a lot more than will fit into the small blank above! But don't dwell on it. Move on if you can't get it within a reasonable time. Exercise 9 may help.

Exercise 8: Assume that $a<b$. Sketch the regions represented by $\int_{0}^{a} f(x) d x, \int_{a}^{b} f(x) d x$, and $\int_{0}^{b} f(x) d x$. Write an equation relating those 3 integrals [two of them add up to the third]. Solve the equation for $\int_{a}^{b} f(x) d x$ and use your general formula from Exercise 7 twice to guess the most general formula. $\quad \int_{a}^{b} f(x) d x=\quad$ (Exercise 9 may help.)

Exercise 9: There is some chance that Exercises 7 and 8 have left you puzzled. It's a big step to make this generalization! In any event, go to the Data/Matrix Editor again, put the same 4 functions in column c1, and change the formula stored in c2. Instead of having c2 compute $\int_{0}^{b} c 1(x) d x$, make it compute $\int_{a}^{b} c 1(x) d x$. [To do so, highlight $\mathbf{c} 2$ as shown in figure 1 , press EENTER, and type• (c1,x,a,b)ENTER.] Maybe filling in the data grid in figure 5 will help to correctly answer the questions in Exercises 7 and 8 or to confirm those answers.

Exercise 10: If you still don't feel confident about your general formulas in Exercises 7 through 9, here's the difficult-to-predict fact that you've been trying to see:

FACT

In order to find the exact value of $\int_{a}^{b} f(x) d x$, you must first find a function G whose derivative is f and then compute $G(b)-G(a)$. (By the way, f must be continuous on $[a, b]$, a very important hypothesis.)
A function such as G in the box above is called an antiderivative of f. That is, if the derivative of G is f, then G is called an antiderivative of f. (In symbols, if $G^{\prime}(x)=f(x)$ then G is called an antiderivative of f.)

For the data grid in figure 6, which is actually the filled-in data grid for Exercise 9, confirm that the column $\mathbf{c 2}$ results are what the "FACT" above says should be there. That is, find the antiderivative of each function in column $\mathbf{c 1}$, plug in b and a, and subtract. [Confirm this by taking the derivative of the antiderivative. You should get the function in the integrand (the function in column c1.)] (Note that the ' 89 's screen is too narrow to see the entire contents of any cell in column $\mathbf{c 2}$ except for row 3, but you can highlight each of the other rows, as shown, and read the entire contents in the command line at the bottom of the screen.)

The "FACT" above is often called The First (or Second) Fundamental Theorem of
Calculus. What it is called varies a lot from book to book, from class to class. Needless to say, by any name, it is very important, as it encapsulates a link between derivatives and integrals!

