Discovering A Fundamental Fact about Integration

by Dave Slomer

You have investigated Riemann sums and have a good feel for what $\int_{a}^{b} f(x)dx$ means [the area between *f* and the *x*-axis from *a* to *b*], what it looks like [the graph below], and how to approximate it [by summing areas of a lot of approximating rectangles]. But there is a <u>symbolic</u> way to calculate many such integrals, giving <u>exact</u> results. Luckily, the TI-89 can compute quite well symbolically.

Exercise 1: Use your head, a sketch on coordinate axes, and a well-known formula from geometry (but <u>*not*</u> your TI-89) to find the <u>exact</u> value of $\int_0^1 x dx$. (The only calculus involved is in correctly interpreting the symbols to make the corresponding sketch.)

Exercise 2: To find some more exact values of integrals, you can quit using your head (well, not <u>entirely</u>!) and let your '89 do the work. Your '89 can even perform symbolic operations in its Data/Matrix Editor, by having one column refer to another.

- Go into your TI-89's **Data/Matrix Editor** (press APPS) 6 3 ⊙ ⊙ and type a **Data** variable name that is not in use, such as **integdat**, and press ENTER).
- Move the cursor to row 1 of column c1 and type x^2 ENTER.
- Move the cursor so that **c2** is highlighted (press () ⊙ ⊙) and type• (**c1**,**x**,**0**,**1**)[ENTER]. [The symbol is 2nd [7].]

The screen should look like figure 1 if you move the cursor so that **c2** is highlighted.

	F17 T0015F	F2 1ot Setup Ce11He	F4 F5 F6+F7 aderCa1cUti1St	Ť
	DATA			
		c1	c2	
	1	x^2	1/3	
	2			
	3			
	4			
r · 1	<u>c2=J</u>	(c1,×,0,1))	
Fig. 1	MHIN	KHD HUTO	FHK	

Because of the formula stored in **c2**, the screen says that $\int_0^1 x^2 dx = \frac{1}{3}$, since row 1 of column **c1** contains **x^2** and row 1 of column **c2** contains 1/3. Overall, the formula in **c2** tells the '89 to evaluate the integral from 0 to 1 for <u>any</u> function of *x* in column **c1** and to put the result in column **c2**. So, column **c2** contains the value of $\int_0^1 c1(x) dx$ for each function of *x* in column **c1**.

In rows 2 through 4 of column c1, type x^3 [ENTER], x^4 [ENTER], and x^5 [ENTER]. The screen will look like the one in figure 2, but the '89 will have calculated 3 more integrals in column c2.

F17 T0015	F2 F3 F Plot Setup Ce11 Hea	4 F5 F6+F7 derCa1cUti1Stat	
DATA			
	c1	c2	
1	x^2	1/3	
2	x^3		
3	X^4		
4	x^5		
<u> r4c1</u>	<u>=x^5</u>		
MAIN	RAD AUTO	PAR	

Exercise 3: Apply your Exercise 2 formula to the <u>triangle</u> whose area you found in Exercise 1. Did you get the same result as in Exercise 1? If not, re-think Exercise 1 or 2.

Exercise 4: Using your head, a sketch, and a well-known formula from geometry (but <u>not</u> your '89), complete the following formula: $\int_{0}^{b} x dx = \underline{\qquad}.$

Exercise 5: In the Data/Matrix Editor [press APPS] 6 [ENTER] to re-use the **current** data grid from Exercise 2], modify the formula stored in **c2** to find a more general result: $\int_0^b c1(x) dx$ [move the cursor so that **c2** is highlighted, press [ENTER] and change the 1 to a **b** so that the command line reads \cdot (**c1**,**x**,**0**,**b**), and press [ENTER]]. The screen should look like the one in figure 3 if you move the cursor so that **c2** is highlighted.

F1+ Tools	F2 F3 F ¹ Plot Setup Ce11 Hea	4 F5 F67 F7 derCalcUtilStat	
DATA			
	c1	c2	
1	x^2		
2	x^3		
3	X^4		
4	x^5		
<u>c2=</u> ∫	<u>(c1,x,0,b)</u>		
3 MAIN	RAD AUTO	PAR	

Fill in column **c2** of the data grid above with the values of the integrals returned by your '89 and then use inductive reasoning to make a <u>guess</u> at a formula: $\int_{0}^{b} x^{n} dx =$ _____.

Exercise 6: Apply your Exercise 5 formula to the <u>triangle</u> whose area you found in Exercise 4. Did you get the same result both ways? If not, re-think Exercise 4 or 5.

Exercise 7: Change column **c1** of the data grid to read as in figure 4. [To do so, move the cursor to row 1, column c2, type cos(x) {or press 2nd Z}, and press ENTER, which puts you in row 2. Repeat the process for rows 2 through 4 {sin(x) is 2nd Y; e^x is \checkmark X}.

Toois P Data	<u>Plot Šetup Ćé11 Héa</u> 	der[caic útii stat]
	c1	c2
1	cos(x)	
2	sin(x)	
3	e^x	
4	1/(x+1)	
	 /// / 0 6\	
	<u>(C1,X,0,D)</u> RAD AUTO	PAR

Fill in column c2 of the data grid above with the values returned by your '89. Then apply inductive reasoning to these results and the results from Exercise 2 to make a guess at a

more general formula:

 $\int_{a}^{b} f(x) dx = \underline{\qquad} \qquad Hint: think derivatives and be$ prepared to write a lot more than will fit into the small blank above! But don't dwell on it. Move on if you can't get it within a reasonable time. Exercise 9 may help.

Exercise 8: Assume that a < b. Sketch the regions represented by $\int_{0}^{a} f(x) dx$, $\int_{a}^{b} f(x) dx$,

and $\int_{a}^{b} f(x) dx$. Write an equation relating those 3 integrals [two of them add up to the third].

Solve the equation for $\int_{a}^{b} f(x) dx$ and use your general formula from Exercise 7 twice to

guess the most general formula. $\int_{a}^{b} f(x) dx =$ (Exercise 9 may help.)

Exercise 9: There is some chance that Exercises 7 and 8 have left you puzzled. It's a big step to make this generalization! In any event, go to the Data/Matrix Editor again, put the same 4 functions in column c1, and change the formula stored in c2. Instead of having c2 compute $\int_{0}^{b} c1(x) dx$, make it compute $\int_{a}^{b} c1(x) dx$. [To do so, highlight **c2** as shown in figure 1, press [ENTER], and type (c1,x,a,b)[ENTER].] Maybe filling in the data grid in figure 5 will help to correctly answer the questions in Exercises 7 and 8 or to confirm those answers.

DATA		
	c1	c2
1	cos(x)	
2	sin(x)	
3	e^x	
4	1/(x+1)	
<u> c2=</u> [(c1,x,a,b)	
MAIN	RAD AUTO	PAR

Exercise 10: If you still don't feel confident about your general formulas in Exercises 7 through 9, here's the difficult-to-predict fact that you've been trying to see:

derivative of *G* is *f*, then *G* is called **an** antiderivative of *f*. (In symbols, if G'(x) = f(x) then *G* is called an antiderivative of *f*.)

For the data grid in figure 6, which is actually the filled-in data grid for Exercise 9, confirm that the column **c2** results are what the "FACT" above says should be there. That is, find the antiderivative of each function in column **c1**, plug in *b* and *a*, and subtract. [Confirm this by taking the derivative of the antiderivative. You should get the function in the integrand (the function in column **c1**.)] (Note that the '89's screen is too narrow to see the entire contents of any cell in column **c2** except for row 3, but you can highlight each of the other rows, as shown, and read the entire contents in the command line at the bottom of the screen.)

the serven.)			
	F1+ ToolsPlot Setup CellHeader CalcutilStat		
	DATA		
		c1	c2
	1	cos(x)	sin(b)-si…
	2	sin(x)	cos(a)-co…
	3	e^x	e^b-e^a
	4	1/(x+1)	ln(b+1)-1
	Br1c2=sin(b)-sin(a)		
Fig. 6	MAIN	RAD AUTO	PAR

The "FACT" above is often called *The First (or Second) Fundamental Theorem of Calculus*. What it is called varies a lot from book to book, from class to class. Needless to say, by any name, it is <u>very important</u>, as it encapsulates a link between derivatives and integrals!