Activity 11

Modeling Damped Motion

Answers to Instructions: Part A

Sample data for this activity is shown in the illustration to the right. Answers to activity questions are based on this data set; as a result, student responses may vary.

Answers to Instructions: Part B

1. $a=0.168$ meters.
2. time for first maximum $=0.642$ seconds time for second maximum $=2.092$ seconds

3. period $=1.45$ seconds
4. $b=4.33$.
5. $c=0.642$.
6. A modified b value of 4.40 provides a good fit horizontally.

The fit is poor vertically because the amplitude is decreasing with time; the constant a should be modified.

Teacher Information (Continued)

Activity 11

Modeling Damped Motion
(Continued)

Answers to Instructions: Part B

8. $y=0.205(0.776)^{x}$. This equation provides a good
fit for the amplitude data.
9. The model in which the amplitudes decay exponentially fits the distance-versus-time data well.

Answers to Questions

1. The b-value remains the same. Because sine and cosine are out of phase by one-quarter period, the new c-value, c^{\prime}, is given by: $c^{\prime}=c-P / 4$, where P is the period of oscillation.
2. Because the amplitude values are increasing with time, the base for the exponential modeling curve would have to be greater than 1 . The form of the sinusoidal portion of the model would remain the same.
3. For undamped oscillations, the velocity-versusdistance curve would have an elliptical shape. Because velocity and distance both decay with time, the resulting plot spirals towards the origin.
