Interior Angles in Polygons

Complete the following chart as you go through the calculator activity. Look for a pattern!!

Polygon	Number of Sides	Number of Triangles	Total Interior Degrees
Triangle			
Rectangle			
Pentagon			
Hexagon			
Heptagon			
Octagon	n		
n-gon			

1. How many degrees are in ONE triangle? \qquad
2. How many total degrees would be in TWO triangles? \qquad
3. What is the relationship between the number of non-overlapping triangles in a polygon and total degrees?
4. Use the pattern you found to calculate the number of total degrees in a polygon with:
a. 20 sides
b. 52 sides
