\qquad

Activity Overview

In this activity, you will create a new document to solve a linear system of three equations in three unknowns. You will learn three different strategies to solve the same linear system, one utilizing the Algebra menu of the Calculator application and each of the other two utilizing a Matrix. Any of the three methods can be used to solve a system of equations.

Steps

Step 1: Select $\left\{\begin{aligned} \text { ron }>\text { New Document. Add a Calculator application. }\end{aligned}\right.$

Step 2: Method 1: linSolve(command from Algebra menu

1. Press Menu > Algebra > Solve Systems of Equations > Solve Systems of Linear Equations.

41 Actions	RAD $\square \times$
$\frac{1}{2}, 52$ Number	1 Solve
$\mathrm{X}=3$ Algebra	2 Factor
$\int_{d} 4$ Calculus	3 Expand
(1)5 Probabilit)	4 Zeros
$\overline{\mathrm{X}} 6$ Statistics	5 Complete the Square
[6: 7 Matrix \&	6 Numerical Solve
\$ $¢ 8$ Finance	7 Solve System of Equations *
\%19 Functions	8 Polynomial Tools
	9 Fraction Tools
	A Convert Expression
	-

2. Choose to solve a system of three linear equations. Press tab to enter the variables that you will be using. Use p, c, and f to represent protein, carbohydrates, and fat. Press enter.

It would be a good idea to save your document. Press atri 泪 and name your document. Press tab 'save.'. As you progress through this activity, remember that otrr esc will undo your previous entry.
3. Enter the information from question 1 of the activity. The screen capture on the right shows the three entries. Press tab to move to the next equation.

Linear Systems and Calories
Name \qquad
4. Press enter to solve the system. Note, $p=4, c=4$, and $f=9$.

Step 2: Method 2: Reduced row-echelon method

1. The same solution can be found by using the reduced rowechelon form of the matrix. Press docv > Insert > Problem then Add Calculator Page..
2. Press Menu > Matrix \& Vector $>$ Create $>$ Matrix.
3. The augmented matrix for a system of equations with three equations with three unknowns will have 3 rows and 4 columns. Press tab to move around the page to make your selections. Highlight OK, and press enter.

\qquad
4. After you input the information into the matrix, your screen should look like the one shown on the right. After you input all of the information, press enter.

The matrix shown is for the system of equations:

$$
\begin{aligned}
91 p+271 c+65 f & =2033 \\
108 p+288 c+48 f & =2016 \\
94 p+345 c+83 f & =2503
\end{aligned}
$$

5. Press Menu > Matrix \& Vector > Reduced Row-Echelon Form.

6. The screen will display rref(. Press ctril to insert the answer from the previous line.
7. Press enter to see the resulting solution matrix.

Again, $p=4, c=4$, and $f=9$.

\qquad

Step 2: Method 3: Matrix inverse

1. The solution can also be found by using an inverse matrix. To add a Calculator page for a new problem, press dociv > Insert > Problem > Add Calculator.

Press Menu > Matrix \& Vector > Create > Matrix.

41 Actions	- Rad ПX
1 Matrix...	e
2 Zero Matrix	spose
3 Identity	minant
4 Diagonal	-Echelon Form
5 Random Matrix	ced Row-Echelon Form
6 Fill	Itaneous
7 Submatrix	is
8 Augment	nsions
9 Column Augment	Operations
A Construct Matrix	ent Operations
	-

2. Create a coefficient matrix (3×3) and a constant matrix $(3 X 1)$ as shown.

Once again, the matrix shown is for the system of equations:

$$
\begin{aligned}
91 p+271 c+65 f & =2033 \\
108 p+288 c+48 f & =2016 \\
94 p+345 c+83 f & =2503
\end{aligned}
$$

3. Copy the coefficient matrix and raise it to -1 power to indicate the inverse matrix. Multiply this by a copy of the constant matrix. When you press enter, you will see the solution to the system.

In matrix notation, this is $[A]^{-1} \cdot[B]$.

Again, $p=4, c=4$, and $f=9$.

