Side-Side-Angle: The Ambiguous Case
Name \qquad

1.1 1.2

Geometry

SSA: The Ambiguous Case
Move the open point to rotate segment TI. Move point T to change the length of segment TI. Follow the instructions on the student handout.

Move to page 1.2.

1. Grab the open circle and rotate $\overline{T I}$.
a. What changes? What remains the same?
b. Grab the open circle to rotate $\overline{T /}$ until a message appears that a triangle has been formed. How many triangles are formed when point T is on $\overline{N S}$?

navigate through the lesson.

2. Move the open circle so that point T is not on $\overline{N S}$. Grab point T and drag it to make $\overline{T l}$ longer and shorter. Use the open circle to rotate $\overline{T \prime}$.
a. What changes? What remains the same?
b. How many triangles can you form?
3. Fill in the following tables given the relationship of $\overline{T l}$ to $\overline{I N}$.

When $\angle I N S$ Is Acute	
Length Relationship of $\overline{T I}$ to $\overline{I N}$	Number of Triangles
$T I=I N$	
$T I>I N$	
$T I<I N$	

\qquad

Click Δ on the screen twice to change the size of $\angle I N S$ to obtuse.

When $\angle I N S$ Is Obtuse	
Length Relationship of $\overline{T I}$ to $\overline{I N}$	Number of Triangles
$T I=I N$	
$T I>I N$	
$T I<I N$	

Click ∇ on the screen to change the size of $\angle I N S$ to right.

When \angle INS Is Right	
Length Relationship of $\overline{T I}$ to $\overline{I N}$	Number of Possible Triangles
$T I=I N$	
$T I>I N$	
$T I<I N$	

4. a. Compare the three tables. What relationship between $\overline{T I}$ and $\overline{I N}$ will give you exactly one triangle?
b. State a general rule for being able to form exactly one triangle given any two sides and a non-included angle.
5. a. Given two segments and the angle formed between them (SAS), how many triangles can you build? Explain your thinking.
b. Given two segments and an angle not included between them (SSA), how many triangles can you build? Explain your thinking.
6. Sherri and Linda were given the information below. Will the triangles they each created using this information always be congruent? Why or why not?
a. The measure of $\overline{A B}$ was 6 inches. The measure of $\overline{B C}$ was 7.5 inches. The measure of $\angle B$ was 45°.
b. The measure of $\overline{A B}$ was 6 inches. The measure of $\overline{B C}$ was 7.5 inches. The measure of $\angle C$ was 45°.
c. The measure of $\overline{A B}$ was 7.7 inches. The measure of $\overline{B C}$ was 6 inches. The measure of $\angle C$ was 45°.
d. The measure of $\overline{A B}$ was 6 inches. The measure of $\angle B$ was 45°. The measure of $\angle A$ was 52°.
7. Why can SAS be used to prove triangles congruent but SSA cannot?
