\qquad
Date \qquad

ACTIVITY 4

What is Gravity?

When an object is tossed into the air, it rises a certain distance and slows down as it does so. When it reaches its highest point, it begins to fall back to earth increasing its velocity. What causes this phenomenon? The gravitational acceleration, g, causes the object to behave as it does.

In this lab, you will perform a series of experiments much as Galileo did with inclined planes. As the angle of inclination of the inclined plane is increased, the object's acceleration will also increase. As the angle of inclination approaches 90°, the value of the acceleration will become closer and closer to that of gravitational acceleration.

You'll Need

- 1 CBR unit
- 1 TI-83 or TI-82 Graphing Calculator
- Wooden board (about 2 meters long)
- Meter stick
- Dynamics cart
- Bricks or books (at least 6)
- Masking tape

Instructions

1．Stack a few bricks or books underneath one end of the ramp．
2．Set the CBR on the ramp as shown．Measure 0.5 meter from the CBR and place a piece of masking tape on the ramp at that point．Your cart should start from this point so that it is no closer than 0.5 meter from the CBR for each trial．

3．Run the RANGER program on your calculator．
4．Enter the setup instructions．
a．From the MAIN MENU select 1：SETUP／SAMPLE to access the setup menu．
b．Press ENTER until the REALTIME option reads no．
c．Press（the down arrow）to select the next line TIME（S）and press ENTER 2 ENTER to change the time to 2 seconds．
d．Press \square to select the next line．Correct or verify the settings and press ENTER．Repeat until the options for each line read as shown at right．

HAIII HEIIU	FSTAFiT［IDH
FEALTIHE：	［1］
TIHEC）	z
［ISFLAT：	VEL
EEらI「III：	［EIITEF］
SHODTHI「İ：	LİHT
UIIITS：	HETEFS

e．Press \square to move the cursor to the START NOW command．Do not press ENTER．
4．Place the cart at the starting tape on the ramp．Release the cart and simultaneously press ENTER on the calculator．

Data Collection

1．At least a portion of the Velocity－Time graph should resemble a straight line．It is only necessary to be able to find two distinct points on the line．If you are not satisfied with the results，press ENTER and select 5：REPEAT SAMPLE．

2．Measure the distance from the tape to the bottom of the ramp along the surface of the ramp．Record the length as d in the table below．

3．Measure the distance from the surface on which the ramp is placed to the point on the ramp where the tape was placed．Record this value as h in the table below．

4．Trace along the graph of the Velocity－Time graph and choose two points that lie along the line．Record them in the table below．

5．Repeat the experiment 5 more times raising the end of the ramp each time．Record all of the results in the table below．

Trial	\mathbf{d}	\mathbf{h}	$\left(\mathbf{t}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)$	$\left(\mathbf{t}_{2}, \mathbf{v}_{\mathbf{2}}\right)$	$\sin (\theta)$	acceleration
1						
2						
3						
4						
5						
6						

6. Press ENTER and select 7:QUIT.
7. From trigonometry, it is known that the
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$.
For each trial, the opposite side is h and the hypotenuse is d. Compute the $\sin (\theta)$ for each trial and record it in the table on the previous page.
8. The slope of the Velocity-Time graph is the acceleration of the object. Using the standard formula
$a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$,
find the slope of the line for each trial and record in the table above as the acceleration.
9. Press STAT and select 4:CIrList. Type 2nd [L5] 2nd [L6] ENTER to clear the two lists.
10. Press STAT, select 1:Edit and use the arrow keys until the first cell in L5 is highlighted.

Enter the first $\sin (\theta)$ and press ENTER. Repeat for the remaining trials.
11. Press 4 and move to the first cell of L6. Enter the first acceleration and press ENTER. Repeat for the remaining trials.
12. Press 2nd [STAT PLOT] and select Plot 1. Highlight On and press ENTER. Change the Type to $1 \sim$, enter L5 as Xlist, L6 as Ylist and use the square as the Mark.
13. Press ZOOM and select 9:ZoomStat. Sketch a graph of acceleration versus $\sin (\theta)$ in the space provided at right.

Questions

1. What is the equation of the line that would best fit the data?

For the TI-83: Press STAT \square and select 4:LinReg (ax+b). Press 2nd [L5] \square 2nd [L6] ENTER.

For the TI-82: Press STAT \square and select 5:LinReg (ax+b). Press 2nd [L5] \square 2nd [L6] ENTER.

This line gives the value of the acceleration of an object as a function of the $\sin (\theta)$. Record the equation below.
$y=$ \qquad
2. Press $\operatorname{MODE} \square \square$ to highlight Degree, and press ENTER. For each angle given below, compute the $\sin (\theta)$, then the acceleration of the cart on an incline with the given angle using the equation from question 1 with the $\sin (\theta)$ as x.

angle	$\boldsymbol{\operatorname { s i n }}(\theta)$	acceleration
30°		
45°		
60°		
75°		
85°		

3. As θ approaches 90°, the $\sin (\theta)$ approaches 1 . Thus, for values close to 90°, the slope of the line is the acceleration. What is the slope of the line?
4. As the angle approaches 90°, the object is nearly in free fall. Since the $\sin \left(90^{\circ}\right)$ is 1 , what would be the acceleration of an object that is in free fall?
\qquad
5. The acceleration of an object in free fall found in question 3 above is gravitational acceleration, g. Its given value is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (or $32 \mathrm{ft} / \mathrm{s}^{2}$). How does your value compare to the true value?
6. When an object is tossed into the air and is rising, what effect does g have on the velocity of the object?
\qquad
7. When an object is rising, it has positive velocity. Thus, would the object have positive or negative acceleration?
\qquad
8. When an object is tossed into the air and it is falling back to earth, what effect does g have on the velocity of the object?
\qquad
9. When an object is falling, it has negative velocity. Thus, would the object have positive or negative acceleration?
\qquad
